xshubhamx commited on
Commit
e14ea73
·
verified ·
1 Parent(s): ef6363a

Upload folder using huggingface_hub

Browse files
all_runs/checkpoint-6430/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/bart-large
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
all_runs/checkpoint-6430/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "facebook/bart-large",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "fc1",
24
+ "q_proj",
25
+ "dense",
26
+ "k_proj",
27
+ "out_proj",
28
+ "fc2",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "SEQ_CLS",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
all_runs/checkpoint-6430/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e89a7150c0255e77148dd701120c341ac8009fb0b0a27aa3904f8d73a42892
3
+ size 34854640
all_runs/checkpoint-6430/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
all_runs/checkpoint-6430/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7fa09ab1b367596e14d2128346d5be32d4ce1f81f2e348643bf808a12fe7c2
3
+ size 69927198
all_runs/checkpoint-6430/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cb3e123e8d9bab117e471921f6fe8a1b57e925b704c8729c60422c191488b35
3
+ size 14244
all_runs/checkpoint-6430/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e183973d3aa34fb26d35d79dbaa31714587ae889ebc679d9929f938ba2321a7
3
+ size 1064
all_runs/checkpoint-6430/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
all_runs/checkpoint-6430/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
all_runs/checkpoint-6430/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 1024,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "BartTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
all_runs/checkpoint-6430/trainer_state.json ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.795502896227358,
3
+ "best_model_checkpoint": "bart-large-lora-no-grad/checkpoint-6430",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 6430,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.78,
13
+ "learning_rate": 4.740798341109383e-05,
14
+ "loss": 1.3548,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 1.0,
19
+ "eval_accuracy": 0.7567776917118513,
20
+ "eval_f1_macro": 0.43635159996281114,
21
+ "eval_f1_micro": 0.7567776917118513,
22
+ "eval_f1_weighted": 0.735942387508421,
23
+ "eval_loss": 0.7811183333396912,
24
+ "eval_macro_fpr": 0.023397002359423266,
25
+ "eval_macro_sensitivity": 0.4733929701344221,
26
+ "eval_macro_specificity": 0.98166320866911,
27
+ "eval_precision": 0.7272429944970519,
28
+ "eval_precision_macro": 0.4205947342353388,
29
+ "eval_recall": 0.7567776917118513,
30
+ "eval_recall_macro": 0.4733929701344221,
31
+ "eval_runtime": 124.629,
32
+ "eval_samples_per_second": 10.359,
33
+ "eval_steps_per_second": 1.3,
34
+ "eval_weighted_fpr": 0.022441395082904516,
35
+ "eval_weighted_sensitivity": 0.7567776917118513,
36
+ "eval_weighted_specificity": 0.9681704383248004,
37
+ "step": 643
38
+ },
39
+ {
40
+ "epoch": 1.56,
41
+ "learning_rate": 4.481596682218767e-05,
42
+ "loss": 0.7738,
43
+ "step": 1000
44
+ },
45
+ {
46
+ "epoch": 2.0,
47
+ "eval_accuracy": 0.7893106119287374,
48
+ "eval_f1_macro": 0.561796090533545,
49
+ "eval_f1_micro": 0.7893106119287374,
50
+ "eval_f1_weighted": 0.7783408570207113,
51
+ "eval_loss": 0.657169759273529,
52
+ "eval_macro_fpr": 0.019577279999420293,
53
+ "eval_macro_sensitivity": 0.5639220943833532,
54
+ "eval_macro_specificity": 0.9841641947022086,
55
+ "eval_precision": 0.7847538302510335,
56
+ "eval_precision_macro": 0.652919812505265,
57
+ "eval_recall": 0.7893106119287374,
58
+ "eval_recall_macro": 0.5639220943833532,
59
+ "eval_runtime": 120.3505,
60
+ "eval_samples_per_second": 10.727,
61
+ "eval_steps_per_second": 1.346,
62
+ "eval_weighted_fpr": 0.018709588664190396,
63
+ "eval_weighted_sensitivity": 0.7893106119287374,
64
+ "eval_weighted_specificity": 0.9731523086043933,
65
+ "step": 1286
66
+ },
67
+ {
68
+ "epoch": 2.33,
69
+ "learning_rate": 4.22239502332815e-05,
70
+ "loss": 0.6874,
71
+ "step": 1500
72
+ },
73
+ {
74
+ "epoch": 3.0,
75
+ "eval_accuracy": 0.8009295120061968,
76
+ "eval_f1_macro": 0.6248193338597906,
77
+ "eval_f1_micro": 0.8009295120061968,
78
+ "eval_f1_weighted": 0.7948048170690496,
79
+ "eval_loss": 0.6484545469284058,
80
+ "eval_macro_fpr": 0.01794652035398996,
81
+ "eval_macro_sensitivity": 0.6498133528886191,
82
+ "eval_macro_specificity": 0.985178423920643,
83
+ "eval_precision": 0.7993513486718621,
84
+ "eval_precision_macro": 0.622395994467453,
85
+ "eval_recall": 0.8009295120061968,
86
+ "eval_recall_macro": 0.6498133528886191,
87
+ "eval_runtime": 122.1243,
88
+ "eval_samples_per_second": 10.571,
89
+ "eval_steps_per_second": 1.327,
90
+ "eval_weighted_fpr": 0.017443833570895267,
91
+ "eval_weighted_sensitivity": 0.8009295120061968,
92
+ "eval_weighted_specificity": 0.9767468468034478,
93
+ "step": 1929
94
+ },
95
+ {
96
+ "epoch": 3.11,
97
+ "learning_rate": 3.963193364437533e-05,
98
+ "loss": 0.5681,
99
+ "step": 2000
100
+ },
101
+ {
102
+ "epoch": 3.89,
103
+ "learning_rate": 3.7039917055469156e-05,
104
+ "loss": 0.502,
105
+ "step": 2500
106
+ },
107
+ {
108
+ "epoch": 4.0,
109
+ "eval_accuracy": 0.82571649883811,
110
+ "eval_f1_macro": 0.7392877210524833,
111
+ "eval_f1_micro": 0.82571649883811,
112
+ "eval_f1_weighted": 0.818185291800718,
113
+ "eval_loss": 0.6912310123443604,
114
+ "eval_macro_fpr": 0.015790725498781473,
115
+ "eval_macro_sensitivity": 0.73988416100595,
116
+ "eval_macro_specificity": 0.9866316247243733,
117
+ "eval_precision": 0.8216256605414862,
118
+ "eval_precision_macro": 0.7660625024843042,
119
+ "eval_recall": 0.82571649883811,
120
+ "eval_recall_macro": 0.73988416100595,
121
+ "eval_runtime": 122.0618,
122
+ "eval_samples_per_second": 10.577,
123
+ "eval_steps_per_second": 1.327,
124
+ "eval_weighted_fpr": 0.01485246550927454,
125
+ "eval_weighted_sensitivity": 0.82571649883811,
126
+ "eval_weighted_specificity": 0.9737578720274908,
127
+ "step": 2572
128
+ },
129
+ {
130
+ "epoch": 4.67,
131
+ "learning_rate": 3.4447900466562985e-05,
132
+ "loss": 0.4443,
133
+ "step": 3000
134
+ },
135
+ {
136
+ "epoch": 5.0,
137
+ "eval_accuracy": 0.8350116189000775,
138
+ "eval_f1_macro": 0.7352088783341215,
139
+ "eval_f1_micro": 0.8350116189000775,
140
+ "eval_f1_weighted": 0.8307677449867239,
141
+ "eval_loss": 0.6655119061470032,
142
+ "eval_macro_fpr": 0.014583446099727526,
143
+ "eval_macro_sensitivity": 0.7343745083798942,
144
+ "eval_macro_specificity": 0.9875414771562052,
145
+ "eval_precision": 0.8323934212037492,
146
+ "eval_precision_macro": 0.758378992160777,
147
+ "eval_recall": 0.8350116189000775,
148
+ "eval_recall_macro": 0.7343745083798942,
149
+ "eval_runtime": 120.1795,
150
+ "eval_samples_per_second": 10.742,
151
+ "eval_steps_per_second": 1.348,
152
+ "eval_weighted_fpr": 0.01391702058150931,
153
+ "eval_weighted_sensitivity": 0.8350116189000775,
154
+ "eval_weighted_specificity": 0.9781105384430038,
155
+ "step": 3215
156
+ },
157
+ {
158
+ "epoch": 5.44,
159
+ "learning_rate": 3.1855883877656815e-05,
160
+ "loss": 0.3903,
161
+ "step": 3500
162
+ },
163
+ {
164
+ "epoch": 6.0,
165
+ "eval_accuracy": 0.8303640588690937,
166
+ "eval_f1_macro": 0.736263969384508,
167
+ "eval_f1_micro": 0.8303640588690937,
168
+ "eval_f1_weighted": 0.8261070082134288,
169
+ "eval_loss": 0.726949155330658,
170
+ "eval_macro_fpr": 0.014900057218914428,
171
+ "eval_macro_sensitivity": 0.7407242112615964,
172
+ "eval_macro_specificity": 0.9872832145506228,
173
+ "eval_precision": 0.8287989539787939,
174
+ "eval_precision_macro": 0.7499597491218987,
175
+ "eval_recall": 0.8303640588690937,
176
+ "eval_recall_macro": 0.7407242112615964,
177
+ "eval_runtime": 120.7099,
178
+ "eval_samples_per_second": 10.695,
179
+ "eval_steps_per_second": 1.342,
180
+ "eval_weighted_fpr": 0.014382347146516056,
181
+ "eval_weighted_sensitivity": 0.8303640588690937,
182
+ "eval_weighted_specificity": 0.9788841593902511,
183
+ "step": 3858
184
+ },
185
+ {
186
+ "epoch": 6.22,
187
+ "learning_rate": 2.926386728875065e-05,
188
+ "loss": 0.3743,
189
+ "step": 4000
190
+ },
191
+ {
192
+ "epoch": 7.0,
193
+ "learning_rate": 2.667185069984448e-05,
194
+ "loss": 0.3398,
195
+ "step": 4500
196
+ },
197
+ {
198
+ "epoch": 7.0,
199
+ "eval_accuracy": 0.8218435321456236,
200
+ "eval_f1_macro": 0.7882567275864875,
201
+ "eval_f1_micro": 0.8218435321456236,
202
+ "eval_f1_weighted": 0.8162748016732313,
203
+ "eval_loss": 0.829186737537384,
204
+ "eval_macro_fpr": 0.016070845836262844,
205
+ "eval_macro_sensitivity": 0.7793235818327271,
206
+ "eval_macro_specificity": 0.9864727684547862,
207
+ "eval_precision": 0.8263611114608566,
208
+ "eval_precision_macro": 0.8274174343984327,
209
+ "eval_recall": 0.8218435321456236,
210
+ "eval_recall_macro": 0.7793235818327271,
211
+ "eval_runtime": 119.848,
212
+ "eval_samples_per_second": 10.772,
213
+ "eval_steps_per_second": 1.352,
214
+ "eval_weighted_fpr": 0.015247944842216919,
215
+ "eval_weighted_sensitivity": 0.8218435321456236,
216
+ "eval_weighted_specificity": 0.9752479946761673,
217
+ "step": 4501
218
+ },
219
+ {
220
+ "epoch": 7.78,
221
+ "learning_rate": 2.4079834110938313e-05,
222
+ "loss": 0.2818,
223
+ "step": 5000
224
+ },
225
+ {
226
+ "epoch": 8.0,
227
+ "eval_accuracy": 0.8218435321456236,
228
+ "eval_f1_macro": 0.7744326737338487,
229
+ "eval_f1_micro": 0.8218435321456236,
230
+ "eval_f1_weighted": 0.8177676452978514,
231
+ "eval_loss": 0.8360002636909485,
232
+ "eval_macro_fpr": 0.01589244410642333,
233
+ "eval_macro_sensitivity": 0.7683164398564319,
234
+ "eval_macro_specificity": 0.9865675690380454,
235
+ "eval_precision": 0.8240487291965984,
236
+ "eval_precision_macro": 0.825060922986609,
237
+ "eval_recall": 0.8218435321456236,
238
+ "eval_recall_macro": 0.7683164398564319,
239
+ "eval_runtime": 123.4163,
240
+ "eval_samples_per_second": 10.461,
241
+ "eval_steps_per_second": 1.313,
242
+ "eval_weighted_fpr": 0.015247944842216919,
243
+ "eval_weighted_sensitivity": 0.8218435321456236,
244
+ "eval_weighted_specificity": 0.9766700034250598,
245
+ "step": 5144
246
+ },
247
+ {
248
+ "epoch": 8.55,
249
+ "learning_rate": 2.1487817522032143e-05,
250
+ "loss": 0.2572,
251
+ "step": 5500
252
+ },
253
+ {
254
+ "epoch": 9.0,
255
+ "eval_accuracy": 0.8342370255615802,
256
+ "eval_f1_macro": 0.7768090432684004,
257
+ "eval_f1_micro": 0.8342370255615802,
258
+ "eval_f1_weighted": 0.8310260455971183,
259
+ "eval_loss": 0.8456389307975769,
260
+ "eval_macro_fpr": 0.01456791962898876,
261
+ "eval_macro_sensitivity": 0.7734627441481091,
262
+ "eval_macro_specificity": 0.9875312890043432,
263
+ "eval_precision": 0.8327945369398388,
264
+ "eval_precision_macro": 0.7998951264485316,
265
+ "eval_recall": 0.8342370255615802,
266
+ "eval_recall_macro": 0.7734627441481091,
267
+ "eval_runtime": 120.0533,
268
+ "eval_samples_per_second": 10.754,
269
+ "eval_steps_per_second": 1.349,
270
+ "eval_weighted_fpr": 0.013994245357049438,
271
+ "eval_weighted_sensitivity": 0.8342370255615802,
272
+ "eval_weighted_specificity": 0.9787323095035695,
273
+ "step": 5787
274
+ },
275
+ {
276
+ "epoch": 9.33,
277
+ "learning_rate": 1.8895800933125972e-05,
278
+ "loss": 0.2594,
279
+ "step": 6000
280
+ },
281
+ {
282
+ "epoch": 10.0,
283
+ "eval_accuracy": 0.8427575522850503,
284
+ "eval_f1_macro": 0.795502896227358,
285
+ "eval_f1_micro": 0.8427575522850503,
286
+ "eval_f1_weighted": 0.8396375162639065,
287
+ "eval_loss": 0.8724260330200195,
288
+ "eval_macro_fpr": 0.013766722680775369,
289
+ "eval_macro_sensitivity": 0.7891074945707898,
290
+ "eval_macro_specificity": 0.9881183812925798,
291
+ "eval_precision": 0.8413820891455371,
292
+ "eval_precision_macro": 0.8148953238440463,
293
+ "eval_recall": 0.8427575522850503,
294
+ "eval_recall_macro": 0.7891074945707898,
295
+ "eval_runtime": 119.6356,
296
+ "eval_samples_per_second": 10.791,
297
+ "eval_steps_per_second": 1.354,
298
+ "eval_weighted_fpr": 0.013151927437641724,
299
+ "eval_weighted_sensitivity": 0.8427575522850503,
300
+ "eval_weighted_specificity": 0.9790181671036463,
301
+ "step": 6430
302
+ }
303
+ ],
304
+ "logging_steps": 500,
305
+ "max_steps": 9645,
306
+ "num_train_epochs": 15,
307
+ "save_steps": 500,
308
+ "total_flos": 5.721423736154112e+16,
309
+ "trial_name": null,
310
+ "trial_params": null
311
+ }
all_runs/checkpoint-6430/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3a630fa83561349566ccd8637b2a60604a52bce09410d68c62b29a29b16c44
3
+ size 4600
all_runs/checkpoint-6430/vocab.json ADDED
The diff for this file is too large to render. See raw diff