--- license: cc-by-sa-4.0 tags: - generated_from_trainer base_model: nlpaueb/legal-bert-base-uncased metrics: - accuracy - precision - recall model-index: - name: legal-bert-base-uncased results: [] --- # legal-bert-base-uncased This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2259 - Accuracy: 0.2455 - Precision: 0.0603 - Recall: 0.2455 - Precision Macro: 0.0164 - Recall Macro: 0.0667 - Macro Fpr: 0.0667 - Weighted Fpr: 0.1800 - Weighted Specificity: 0.7545 - Macro Specificity: 0.9333 - Weighted Sensitivity: 0.2455 - Macro Sensitivity: 0.0667 - F1 Micro: 0.2455 - F1 Macro: 0.0263 - F1 Weighted: 0.0968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:| | 2.2376 | 1.0 | 643 | 2.2455 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2504 | 2.0 | 1286 | 2.2412 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2292 | 3.0 | 1929 | 2.2300 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.218 | 4.0 | 2572 | 2.2316 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2317 | 5.0 | 3215 | 2.2295 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2355 | 6.0 | 3858 | 2.2310 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2231 | 7.0 | 4501 | 2.2300 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2212 | 8.0 | 5144 | 2.2291 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2318 | 9.0 | 5787 | 2.2258 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | | 2.2128 | 10.0 | 6430 | 2.2259 | 0.2455 | 0.0603 | 0.2455 | 0.0164 | 0.0667 | 0.0667 | 0.1800 | 0.7545 | 0.9333 | 0.2455 | 0.0667 | 0.2455 | 0.0263 | 0.0968 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2