File size: 6,545 Bytes
969a778
 
 
9c507c8
b663636
 
 
 
969a778
 
 
 
3d6561d
bbb443a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969a778
 
 
 
 
 
 
3d6561d
ca9b32d
 
 
 
b663636
 
 
 
 
 
 
 
 
 
 
969a778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b663636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969a778
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
tags:
- generated_from_trainer
base_model: openaccess-ai-collective/tiny-mistral
metrics:
- accuracy
- precision
- recall
model-index:
- name: tiny-mistral
  results: []
---
## Metrics Upon Eval with max_length = 512

- loss: 2.4489
- accuracy: 0.7250
- precision: 0.7150
- recall: 0.7250
- precision_macro: 0.6583
- recall_macro: 0.6262
- macro_fpr: 0.0278
- weighted_fpr: 0.0264
- weighted_specificity: 0.9597
- macro_specificity: 0.9790
- weighted_sensitivity: 0.7250
- macro_sensitivity: 0.6262
- f1_micro: 0.7250
- f1_macro: 0.6317
- f1_weighted: 0.7155
- runtime: 27.7396
- samples_per_second: 46.5400
- steps_per_second: 5.8400


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-mistral

This model is a fine-tuned version of [openaccess-ai-collective/tiny-mistral](https://huggingface.co/openaccess-ai-collective/tiny-mistral) on an unknown dataset.
It achieves the following results on the evaluation set (at last epoch):
- Loss: 2.5607
- Accuracy: 0.7126
- Precision: 0.7033
- Recall: 0.7126
- Precision Macro: 0.6443
- Recall Macro: 0.5942
- Macro Fpr: 0.0292
- Weighted Fpr: 0.0282
- Weighted Specificity: 0.9577
- Macro Specificity: 0.9779
- Weighted Sensitivity: 0.7111
- Macro Sensitivity: 0.5942
- F1 Micro: 0.7111
- F1 Macro: 0.6107
- F1 Weighted: 0.7086

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
| 1.4479        | 1.0   | 643  | 1.1182          | 0.6499   | 0.6258    | 0.6499 | 0.4712          | 0.4744       | 0.0390    | 0.0371       | 0.9470               | 0.9731            | 0.6499               | 0.4744            | 0.6499   | 0.4547   | 0.6214      |
| 0.8133        | 2.0   | 1286 | 1.0854          | 0.6987   | 0.7197    | 0.6987 | 0.5877          | 0.5528       | 0.0305    | 0.0299       | 0.9608               | 0.9773            | 0.6987               | 0.5528            | 0.6987   | 0.5474   | 0.6970      |
| 0.5592        | 3.0   | 1929 | 1.6114          | 0.6987   | 0.7107    | 0.6987 | 0.6368          | 0.5881       | 0.0304    | 0.0299       | 0.9609               | 0.9773            | 0.6987               | 0.5881            | 0.6987   | 0.6013   | 0.6998      |
| 0.2375        | 4.0   | 2572 | 1.7779          | 0.6956   | 0.7001    | 0.6956 | 0.5840          | 0.5667       | 0.0310    | 0.0303       | 0.9566               | 0.9768            | 0.6956               | 0.5667            | 0.6956   | 0.5699   | 0.6923      |
| 0.1586        | 5.0   | 3215 | 2.1752          | 0.6948   | 0.7011    | 0.6948 | 0.5797          | 0.5799       | 0.0316    | 0.0304       | 0.9601               | 0.9770            | 0.6948               | 0.5799            | 0.6948   | 0.5695   | 0.6917      |
| 0.0956        | 6.0   | 3858 | 2.3261          | 0.7080   | 0.7213    | 0.7080 | 0.6169          | 0.6191       | 0.0291    | 0.0286       | 0.9646               | 0.9782            | 0.7080               | 0.6191            | 0.7080   | 0.6115   | 0.7105      |
| 0.044         | 7.0   | 4501 | 2.3308          | 0.7157   | 0.7143    | 0.7157 | 0.6184          | 0.5939       | 0.0285    | 0.0276       | 0.9611               | 0.9785            | 0.7157               | 0.5939            | 0.7157   | 0.6014   | 0.7131      |
| 0.0212        | 8.0   | 5144 | 2.5607          | 0.7126   | 0.7033    | 0.7126 | 0.6494          | 0.6175       | 0.0294    | 0.0280       | 0.9581               | 0.9780            | 0.7126               | 0.6175            | 0.7126   | 0.6237   | 0.7047      |
| 0.0183        | 9.0   | 5787 | 2.6405          | 0.7119   | 0.7092    | 0.7119 | 0.6133          | 0.5850       | 0.0291    | 0.0281       | 0.9599               | 0.9781            | 0.7119               | 0.5850            | 0.7119   | 0.5935   | 0.7088      |
| 0.0145        | 10.0  | 6430 | 2.7268          | 0.7088   | 0.7058    | 0.7088 | 0.6235          | 0.5945       | 0.0297    | 0.0285       | 0.9574               | 0.9777            | 0.7088               | 0.5945            | 0.7088   | 0.6039   | 0.7051      |
| 0.0065        | 11.0  | 7073 | 2.7568          | 0.7149   | 0.7133    | 0.7149 | 0.6342          | 0.5966       | 0.0286    | 0.0277       | 0.9609               | 0.9784            | 0.7149               | 0.5966            | 0.7149   | 0.6068   | 0.7123      |
| 0.0012        | 12.0  | 7716 | 2.9243          | 0.7088   | 0.7106    | 0.7088 | 0.6261          | 0.5886       | 0.0296    | 0.0285       | 0.9581               | 0.9778            | 0.7088               | 0.5886            | 0.7088   | 0.6011   | 0.7071      |
| 0.0019        | 13.0  | 8359 | 2.9101          | 0.7119   | 0.7107    | 0.7119 | 0.6399          | 0.5910       | 0.0291    | 0.0281       | 0.9576               | 0.9780            | 0.7119               | 0.5910            | 0.7119   | 0.6073   | 0.7085      |
| 0.0011        | 14.0  | 9002 | 2.9270          | 0.7103   | 0.7101    | 0.7103 | 0.6430          | 0.5925       | 0.0293    | 0.0283       | 0.9576               | 0.9779            | 0.7103               | 0.5925            | 0.7103   | 0.6090   | 0.7077      |
| 0.0008        | 15.0  | 9645 | 2.9390          | 0.7111   | 0.7110    | 0.7111 | 0.6443          | 0.5942       | 0.0292    | 0.0282       | 0.9577               | 0.9779            | 0.7111               | 0.5942            | 0.7111   | 0.6107   | 0.7086      |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2