xshubhamx commited on
Commit
2011305
·
verified ·
1 Parent(s): 781d483

End of training

Browse files
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlnet/xlnet-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: xlnet-base-cased
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlnet-base-cased
19
+
20
+ This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.9234
23
+ - Accuracy: 0.8218
24
+ - Precision: 0.8189
25
+ - Recall: 0.8218
26
+ - Precision Macro: 0.7836
27
+ - Recall Macro: 0.7606
28
+ - Macro Fpr: 0.0159
29
+ - Weighted Fpr: 0.0152
30
+ - Weighted Specificity: 0.9756
31
+ - Macro Specificity: 0.9865
32
+ - Weighted Sensitivity: 0.8218
33
+ - Macro Sensitivity: 0.7606
34
+ - F1 Micro: 0.8218
35
+ - F1 Macro: 0.7664
36
+ - F1 Weighted: 0.8189
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 30
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
68
+ | 1.2613 | 1.0 | 643 | 0.7758 | 0.7676 | 0.7673 | 0.7676 | 0.5269 | 0.5129 | 0.0220 | 0.0212 | 0.9680 | 0.9824 | 0.7676 | 0.5129 | 0.7676 | 0.4819 | 0.7524 |
69
+ | 0.7364 | 2.0 | 1286 | 0.6755 | 0.8071 | 0.8088 | 0.8071 | 0.7425 | 0.6972 | 0.0174 | 0.0168 | 0.9751 | 0.9855 | 0.8071 | 0.6972 | 0.8071 | 0.7019 | 0.8013 |
70
+ | 0.6021 | 3.0 | 1929 | 0.8443 | 0.8064 | 0.8016 | 0.8064 | 0.7270 | 0.7262 | 0.0176 | 0.0169 | 0.9718 | 0.9852 | 0.8064 | 0.7262 | 0.8064 | 0.7229 | 0.8014 |
71
+ | 0.4361 | 4.0 | 2572 | 0.8850 | 0.8002 | 0.8001 | 0.8002 | 0.7167 | 0.7048 | 0.0180 | 0.0175 | 0.9731 | 0.9849 | 0.8002 | 0.7048 | 0.8002 | 0.7051 | 0.7971 |
72
+ | 0.3359 | 5.0 | 3215 | 1.1264 | 0.8017 | 0.7981 | 0.8017 | 0.6531 | 0.6681 | 0.0181 | 0.0174 | 0.9732 | 0.9850 | 0.8017 | 0.6681 | 0.8017 | 0.6459 | 0.7962 |
73
+ | 0.2827 | 6.0 | 3858 | 1.1471 | 0.7994 | 0.8092 | 0.7994 | 0.7389 | 0.6922 | 0.0183 | 0.0176 | 0.9686 | 0.9845 | 0.7994 | 0.6922 | 0.7994 | 0.7042 | 0.7952 |
74
+ | 0.1945 | 7.0 | 4501 | 1.1841 | 0.8149 | 0.8129 | 0.8149 | 0.7850 | 0.7598 | 0.0166 | 0.0160 | 0.9746 | 0.9860 | 0.8149 | 0.7598 | 0.8149 | 0.7667 | 0.8122 |
75
+ | 0.1286 | 8.0 | 5144 | 1.3231 | 0.8079 | 0.8105 | 0.8079 | 0.7630 | 0.7216 | 0.0171 | 0.0167 | 0.9757 | 0.9856 | 0.8079 | 0.7216 | 0.8079 | 0.7283 | 0.8067 |
76
+ | 0.1304 | 9.0 | 5787 | 1.3869 | 0.8102 | 0.8118 | 0.8102 | 0.7705 | 0.7603 | 0.0171 | 0.0165 | 0.9741 | 0.9856 | 0.8102 | 0.7603 | 0.8102 | 0.7570 | 0.8088 |
77
+ | 0.0875 | 10.0 | 6430 | 1.6901 | 0.7823 | 0.7932 | 0.7823 | 0.7601 | 0.7020 | 0.0199 | 0.0195 | 0.9680 | 0.9834 | 0.7823 | 0.7020 | 0.7823 | 0.7192 | 0.7817 |
78
+ | 0.1075 | 11.0 | 7073 | 1.6517 | 0.7978 | 0.8021 | 0.7978 | 0.7513 | 0.7567 | 0.0183 | 0.0178 | 0.9758 | 0.9849 | 0.7978 | 0.7567 | 0.7978 | 0.7470 | 0.7935 |
79
+ | 0.0632 | 12.0 | 7716 | 1.5290 | 0.8149 | 0.8184 | 0.8149 | 0.7746 | 0.7772 | 0.0167 | 0.0160 | 0.9738 | 0.9859 | 0.8149 | 0.7772 | 0.8149 | 0.7707 | 0.8150 |
80
+ | 0.0565 | 13.0 | 8359 | 1.5766 | 0.8064 | 0.8107 | 0.8064 | 0.7528 | 0.7628 | 0.0174 | 0.0169 | 0.9769 | 0.9856 | 0.8064 | 0.7628 | 0.8064 | 0.7537 | 0.8061 |
81
+ | 0.0504 | 14.0 | 9002 | 1.7548 | 0.8048 | 0.8100 | 0.8048 | 0.7569 | 0.7702 | 0.0174 | 0.0170 | 0.9765 | 0.9854 | 0.8048 | 0.7702 | 0.8048 | 0.7553 | 0.8046 |
82
+ | 0.0295 | 15.0 | 9645 | 1.7570 | 0.8102 | 0.8226 | 0.8102 | 0.7705 | 0.7611 | 0.0168 | 0.0165 | 0.9770 | 0.9858 | 0.8102 | 0.7611 | 0.8102 | 0.7610 | 0.8141 |
83
+ | 0.0338 | 16.0 | 10288 | 1.7394 | 0.8110 | 0.8138 | 0.8110 | 0.7639 | 0.7659 | 0.0168 | 0.0164 | 0.9775 | 0.9859 | 0.8110 | 0.7659 | 0.8110 | 0.7613 | 0.8100 |
84
+ | 0.0444 | 17.0 | 10931 | 1.7975 | 0.8118 | 0.8201 | 0.8118 | 0.7511 | 0.7610 | 0.0168 | 0.0163 | 0.9775 | 0.9859 | 0.8118 | 0.7610 | 0.8118 | 0.7457 | 0.8129 |
85
+ | 0.0397 | 18.0 | 11574 | 1.6921 | 0.8149 | 0.8203 | 0.8149 | 0.7540 | 0.7854 | 0.0165 | 0.0160 | 0.9780 | 0.9862 | 0.8149 | 0.7854 | 0.8149 | 0.7553 | 0.8130 |
86
+ | 0.0356 | 19.0 | 12217 | 1.6908 | 0.8273 | 0.8307 | 0.8273 | 0.7764 | 0.7992 | 0.0152 | 0.0147 | 0.9784 | 0.9870 | 0.8273 | 0.7992 | 0.8273 | 0.7814 | 0.8265 |
87
+ | 0.0306 | 20.0 | 12860 | 1.8374 | 0.8180 | 0.8208 | 0.8180 | 0.7635 | 0.7756 | 0.0162 | 0.0156 | 0.9771 | 0.9863 | 0.8180 | 0.7756 | 0.8180 | 0.7620 | 0.8166 |
88
+ | 0.0234 | 21.0 | 13503 | 1.7738 | 0.8195 | 0.8185 | 0.8195 | 0.7947 | 0.7602 | 0.0160 | 0.0155 | 0.9760 | 0.9864 | 0.8195 | 0.7602 | 0.8195 | 0.7713 | 0.8174 |
89
+ | 0.0091 | 22.0 | 14146 | 1.8537 | 0.8172 | 0.8167 | 0.8172 | 0.7732 | 0.7646 | 0.0163 | 0.0157 | 0.9764 | 0.9862 | 0.8172 | 0.7646 | 0.8172 | 0.7654 | 0.8143 |
90
+ | 0.0138 | 23.0 | 14789 | 1.8306 | 0.8102 | 0.8173 | 0.8102 | 0.7729 | 0.7569 | 0.0167 | 0.0165 | 0.9757 | 0.9857 | 0.8102 | 0.7569 | 0.8102 | 0.7625 | 0.8125 |
91
+ | 0.0213 | 24.0 | 15432 | 1.9363 | 0.8125 | 0.8149 | 0.8125 | 0.7777 | 0.7540 | 0.0168 | 0.0162 | 0.9739 | 0.9858 | 0.8125 | 0.7540 | 0.8125 | 0.7622 | 0.8115 |
92
+ | 0.0034 | 25.0 | 16075 | 1.9552 | 0.8156 | 0.8179 | 0.8156 | 0.7843 | 0.7583 | 0.0165 | 0.0159 | 0.9740 | 0.9860 | 0.8156 | 0.7583 | 0.8156 | 0.7657 | 0.8147 |
93
+ | 0.0028 | 26.0 | 16718 | 1.9404 | 0.8172 | 0.8163 | 0.8172 | 0.7884 | 0.7591 | 0.0164 | 0.0157 | 0.9747 | 0.9861 | 0.8172 | 0.7591 | 0.8172 | 0.7656 | 0.8137 |
94
+ | 0.0105 | 27.0 | 17361 | 1.9156 | 0.8180 | 0.8132 | 0.8180 | 0.7848 | 0.7575 | 0.0164 | 0.0156 | 0.9742 | 0.9861 | 0.8180 | 0.7575 | 0.8180 | 0.7667 | 0.8140 |
95
+ | 0.0048 | 28.0 | 18004 | 1.9104 | 0.8203 | 0.8196 | 0.8203 | 0.7877 | 0.7615 | 0.0160 | 0.0154 | 0.9758 | 0.9864 | 0.8203 | 0.7615 | 0.8203 | 0.7658 | 0.8175 |
96
+ | 0.0011 | 29.0 | 18647 | 1.9312 | 0.8203 | 0.8185 | 0.8203 | 0.7888 | 0.7600 | 0.0161 | 0.0154 | 0.9755 | 0.9864 | 0.8203 | 0.7600 | 0.8203 | 0.7664 | 0.8173 |
97
+ | 0.0004 | 30.0 | 19290 | 1.9234 | 0.8218 | 0.8189 | 0.8218 | 0.7836 | 0.7606 | 0.0159 | 0.0152 | 0.9756 | 0.9865 | 0.8218 | 0.7606 | 0.8218 | 0.7664 | 0.8189 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.35.2
103
+ - Pytorch 2.1.0+cu121
104
+ - Datasets 2.19.0
105
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:573a215f1710839fc5324baa3af955f9e81fd61369c96445b268afb1b0888777
3
  size 469304588
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581bcb6d55ad3761717697a9673d4aecdcffde9e210e1c224a1113530481433d
3
  size 469304588
runs/Apr20_15-36-23_baf42f2e2df6/events.out.tfevents.1713627385.baf42f2e2df6.4203.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c246afd917fcaef6cf75fb2d582a7032797aa6188c366744b3dd4f4f6920dd90
3
- size 43117
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdeb5354b8bf7b2a453e49c6569f821b56c0302c5f106cf4704fc35153194a6b
3
+ size 43477