LZHgrla commited on
Commit
1bc912c
·
verified ·
1 Parent(s): e95127a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - liuhaotian/LLaVA-Pretrain
4
+ - liuhaotian/LLaVA-Instruct-150K
5
+ pipeline_tag: image-text-to-text
6
+ library_name: xtuner
7
+ ---
8
+
9
+ <div align="center">
10
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
11
+
12
+
13
+ [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
14
+
15
+
16
+ </div>
17
+
18
+ ## Model
19
+
20
+ llava-llama-3-8b-transformers is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) by [XTuner](https://github.com/InternLM/xtuner).
21
+
22
+ **Note: This model is in official LLaVA format.**
23
+
24
+ Resources:
25
+
26
+ - GitHub: [xtuner](https://github.com/InternLM/xtuner)
27
+ - Official LLaVA format model: [xtuner/llava-llama-3-8b-hf](https://huggingface.co/xtuner/llava-llama-3-8b-hf)
28
+ - XTuner LLaVA format model: [xtuner/llava-llama-3-8b](https://huggingface.co/xtuner/llava-llama-3-8b)
29
+
30
+
31
+ ## Details
32
+
33
+ | Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
34
+ | :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
35
+ | LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
36
+ | LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
37
+ | LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
38
+
39
+ ## Results
40
+
41
+ <div align="center">
42
+ <img src="https://github.com/InternLM/xtuner/assets/36994684/a157638c-3500-44ed-bfab-d8d8249f91bb" alt="Image" width=500" />
43
+ </div>
44
+
45
+ | Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
46
+ | :-------------------- | :---------------: | :---------------: | :---------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: |
47
+ | LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
48
+ | LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
49
+ | LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
50
+
51
+
52
+ ## QuickStart
53
+
54
+
55
+ ### Chat by `pipeline`
56
+
57
+
58
+ ```python
59
+ from transformers import pipeline
60
+ from PIL import Image
61
+ import requests
62
+
63
+ model_id = "xtuner/llava-llama-3-8b-transformers"
64
+ pipe = pipeline("image-to-text", model=model_id, device=0)
65
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
66
+
67
+ image = Image.open(requests.get(url, stream=True).raw)
68
+ prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
69
+ "<|start_header_id|>assistant<|end_header_id|>\n\n")
70
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
71
+ print(outputs)
72
+ >>> [{'generated_text': 'user\n\n\nWhat are these?assistant\n\nThese are two cats lying on a pink blanket or bed, possibly on a couch...'}]
73
+ ```
74
+
75
+ ### Chat by pure `transformers`
76
+
77
+ ```python
78
+ import requests
79
+ from PIL import Image
80
+
81
+ import torch
82
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
83
+
84
+ model_id = "xtuner/llava-llama-3-8b-transformers"
85
+
86
+ prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
87
+ "<|start_header_id|>assistant<|end_header_id|>\n\n")
88
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
89
+
90
+ model = LlavaForConditionalGeneration.from_pretrained(
91
+ model_id,
92
+ torch_dtype=torch.float16,
93
+ low_cpu_mem_usage=True,
94
+ ).to(0)
95
+
96
+ processor = AutoProcessor.from_pretrained(model_id)
97
+
98
+
99
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
100
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
101
+
102
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
103
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
104
+ >>> These are two cats lying on a pink blanket or bed, possibly on a couch...
105
+ ```
106
+
107
+
108
+ ### Reproduce
109
+
110
+ Please refer to [docs](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llava/phi3_mini_4k_instruct_clip_vit_large_p14_336#readme).
111
+
112
+
113
+ ## Citation
114
+
115
+ ```bibtex
116
+ @misc{2023xtuner,
117
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
118
+ author={XTuner Contributors},
119
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
120
+ year={2023}
121
+ }
122
+ ```