File size: 1,947 Bytes
b695480 f53f76a b695480 f53f76a b695480 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: shibing624/text2vec-base-chinese
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cosent-similarity-text2vec
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cosent-similarity-text2vec
This model is a fine-tuned version of [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1408
- Accuracy: 0.9605
- F1: 0.9670
- Precision: 0.9778
- Recall: 0.9565
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 22 | 0.2330 | 0.9211 | 0.9318 | 0.9762 | 0.8913 |
| No log | 2.0 | 44 | 0.2088 | 0.9342 | 0.9438 | 0.9767 | 0.9130 |
| No log | 3.0 | 66 | 0.1484 | 0.9605 | 0.9670 | 0.9778 | 0.9565 |
| No log | 4.0 | 88 | 0.1370 | 0.9605 | 0.9670 | 0.9778 | 0.9565 |
| No log | 5.0 | 110 | 0.1408 | 0.9605 | 0.9670 | 0.9778 | 0.9565 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.1
|