pom
commited on
Commit
•
c760666
1
Parent(s):
8528264
update files
Browse files- config.json +1 -1
- modeling_xverse.py +153 -103
- ms_wrapper.py +95 -0
config.json
CHANGED
@@ -13,7 +13,7 @@
|
|
13 |
"hidden_size": 5120,
|
14 |
"initializer_range": 0.02,
|
15 |
"intermediate_size": 13824,
|
16 |
-
"max_position_embeddings":
|
17 |
"max_tokenizer_truncation": 262144,
|
18 |
"model_type": "xverse",
|
19 |
"num_attention_heads": 40,
|
|
|
13 |
"hidden_size": 5120,
|
14 |
"initializer_range": 0.02,
|
15 |
"intermediate_size": 13824,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
"max_tokenizer_truncation": 262144,
|
18 |
"model_type": "xverse",
|
19 |
"num_attention_heads": 40,
|
modeling_xverse.py
CHANGED
@@ -33,6 +33,7 @@ from transformers.modeling_utils import PreTrainedModel
|
|
33 |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
34 |
from transformers.generation.utils import GenerationConfig
|
35 |
from .configuration_xverse import XverseConfig
|
|
|
36 |
|
37 |
|
38 |
logger = logging.get_logger(__name__)
|
@@ -48,13 +49,15 @@ def _make_causal_mask(
|
|
48 |
Make causal mask used for bi-directional self-attention.
|
49 |
"""
|
50 |
bsz, tgt_len = input_ids_shape
|
51 |
-
mask = torch.full((tgt_len, tgt_len), torch.tensor(
|
|
|
52 |
mask_cond = torch.arange(mask.size(-1), device=device)
|
53 |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
54 |
mask = mask.to(dtype)
|
55 |
|
56 |
if past_key_values_length > 0:
|
57 |
-
mask = torch.cat([torch.zeros(
|
|
|
58 |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
59 |
|
60 |
|
@@ -66,7 +69,8 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
66 |
bsz, src_len = mask.size()
|
67 |
tgt_len = tgt_len if tgt_len is not None else src_len
|
68 |
|
69 |
-
expanded_mask = mask[:, None, None, :].expand(
|
|
|
70 |
|
71 |
inverted_mask = 1.0 - expanded_mask
|
72 |
|
@@ -84,8 +88,10 @@ class XverseRMSNorm(nn.Module):
|
|
84 |
|
85 |
def forward(self, hidden_states):
|
86 |
input_dtype = hidden_states.dtype
|
87 |
-
variance = hidden_states.to(torch.float32).pow(
|
88 |
-
|
|
|
|
|
89 |
|
90 |
return (self.weight * hidden_states).to(input_dtype)
|
91 |
|
@@ -93,29 +99,47 @@ class XverseRMSNorm(nn.Module):
|
|
93 |
class XverseRotaryEmbedding(torch.nn.Module):
|
94 |
def __init__(self, dim, max_position_embeddings=2048, base=500000, device=None):
|
95 |
super().__init__()
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
self.register_buffer("inv_freq", inv_freq)
|
98 |
|
99 |
# Build here to make `torch.jit.trace` work.
|
100 |
self.max_seq_len_cached = max_position_embeddings
|
101 |
-
|
|
|
|
|
102 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
103 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
104 |
emb = torch.cat((freqs, freqs), dim=-1)
|
105 |
-
self.register_buffer("cos_cached", emb.cos()[
|
106 |
-
|
|
|
|
|
107 |
|
108 |
def forward(self, x, seq_len=None):
|
109 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
110 |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
111 |
if seq_len > self.max_seq_len_cached:
|
112 |
-
|
113 |
-
t = torch.arange(
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
return (
|
120 |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
121 |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
@@ -125,7 +149,7 @@ class XverseRotaryEmbedding(torch.nn.Module):
|
|
125 |
def rotate_half(x):
|
126 |
"""Rotates half the hidden dims of the input."""
|
127 |
x1 = x[..., : x.shape[-1] // 2]
|
128 |
-
x2 = x[..., x.shape[-1] // 2
|
129 |
return torch.cat((-x2, x1), dim=-1)
|
130 |
|
131 |
|
@@ -173,11 +197,16 @@ class XverseAttention(nn.Module):
|
|
173 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
174 |
f" and `num_heads`: {self.num_heads})."
|
175 |
)
|
176 |
-
self.q_proj = nn.Linear(
|
177 |
-
|
178 |
-
self.
|
179 |
-
|
180 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
183 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
@@ -190,64 +219,50 @@ class XverseAttention(nn.Module):
|
|
190 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
191 |
output_attentions: bool = False,
|
192 |
use_cache: bool = False,
|
|
|
193 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
194 |
-
bsz, q_len, _ = hidden_states.size()
|
195 |
-
|
196 |
-
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
197 |
-
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
198 |
-
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
199 |
-
|
200 |
-
kv_seq_len = key_states.shape[-2]
|
201 |
-
if past_key_value is not None:
|
202 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
203 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
204 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
205 |
-
# [bsz, nh, t, hd]
|
206 |
|
207 |
-
|
208 |
-
# reuse k, v, self_attention
|
209 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
210 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
211 |
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
-
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
219 |
-
f" {attn_weights.size()}"
|
220 |
-
)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
attn_weights = attn_weights + attention_mask
|
228 |
-
attn_weights = torch.max(
|
229 |
-
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
|
230 |
-
)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
241 |
|
242 |
-
attn_output =
|
|
|
|
|
|
|
243 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
244 |
-
|
245 |
attn_output = self.o_proj(attn_output)
|
246 |
-
|
247 |
-
if not output_attentions:
|
248 |
-
attn_weights = None
|
249 |
-
|
250 |
-
return attn_output, attn_weights, past_key_value
|
251 |
|
252 |
|
253 |
class XverseDecoderLayer(nn.Module):
|
@@ -260,8 +275,10 @@ class XverseDecoderLayer(nn.Module):
|
|
260 |
intermediate_size=config.intermediate_size,
|
261 |
hidden_act=config.hidden_act,
|
262 |
)
|
263 |
-
self.input_layernorm = XverseRMSNorm(
|
264 |
-
|
|
|
|
|
265 |
|
266 |
def forward(
|
267 |
self,
|
@@ -426,6 +443,7 @@ XVERSE_INPUTS_DOCSTRING = r"""
|
|
426 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
427 |
"""
|
428 |
|
|
|
429 |
@add_start_docstrings(
|
430 |
"The bare Xverse Model outputting raw hidden-states without any specific head on top.",
|
431 |
XVERSE_START_DOCSTRING,
|
@@ -443,8 +461,10 @@ class XverseModel(XversePreTrainedModel):
|
|
443 |
self.padding_idx = config.pad_token_id
|
444 |
self.vocab_size = config.vocab_size
|
445 |
|
446 |
-
self.embed_tokens = nn.Embedding(
|
447 |
-
|
|
|
|
|
448 |
self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
449 |
|
450 |
self.gradient_checkpointing = False
|
@@ -476,7 +496,8 @@ class XverseModel(XversePreTrainedModel):
|
|
476 |
inputs_embeds.device
|
477 |
)
|
478 |
combined_attention_mask = (
|
479 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask +
|
|
|
480 |
)
|
481 |
|
482 |
return combined_attention_mask
|
@@ -504,13 +525,15 @@ class XverseModel(XversePreTrainedModel):
|
|
504 |
|
505 |
# retrieve input_ids and inputs_embeds
|
506 |
if input_ids is not None and inputs_embeds is not None:
|
507 |
-
raise ValueError(
|
|
|
508 |
elif input_ids is not None:
|
509 |
batch_size, seq_length = input_ids.shape
|
510 |
elif inputs_embeds is not None:
|
511 |
batch_size, seq_length, _ = inputs_embeds.shape
|
512 |
else:
|
513 |
-
raise ValueError(
|
|
|
514 |
|
515 |
seq_length_with_past = seq_length
|
516 |
past_key_values_length = 0
|
@@ -536,7 +559,8 @@ class XverseModel(XversePreTrainedModel):
|
|
536 |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
537 |
)
|
538 |
attention_mask = self._prepare_decoder_attention_mask(
|
539 |
-
attention_mask, (batch_size,
|
|
|
540 |
)
|
541 |
|
542 |
hidden_states = inputs_embeds
|
@@ -588,7 +612,8 @@ class XverseModel(XversePreTrainedModel):
|
|
588 |
hidden_states = layer_outputs[0]
|
589 |
|
590 |
if use_cache:
|
591 |
-
next_decoder_cache += (
|
|
|
592 |
|
593 |
if output_attentions:
|
594 |
all_self_attns += (layer_outputs[1],)
|
@@ -615,7 +640,8 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
615 |
super().__init__(config)
|
616 |
self.model = XverseModel(config)
|
617 |
|
618 |
-
self.lm_head = nn.Linear(
|
|
|
619 |
|
620 |
# Initialize weights and apply final processing
|
621 |
self.post_init()
|
@@ -726,25 +752,32 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
726 |
attentions=outputs.attentions,
|
727 |
)
|
728 |
|
729 |
-
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=2048):
|
730 |
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
|
731 |
max_input_tokens = self.config.max_position_embeddings - max_new_tokens
|
732 |
-
max_input_tokens = max(
|
733 |
-
|
|
|
|
|
734 |
|
735 |
total_input, round_input = [], []
|
736 |
-
user_prompt_tokens = tokenizer.encode(
|
737 |
-
|
738 |
-
|
|
|
|
|
|
|
739 |
assist_prompt_len = len(assist_prompt_tokens)
|
740 |
|
741 |
for i, message in enumerate(messages[::-1]):
|
742 |
if message['role'] == 'user' or message['role'] == 'exec':
|
743 |
user_content = f"{message['content']}\n\n"
|
744 |
content_tokens = user_prompt_tokens + tokenizer.encode(user_content, return_token_type_ids=False) if message['role'] == 'user' else \
|
745 |
-
exec_prompt_tokens +
|
|
|
746 |
if i == 0:
|
747 |
-
content_tokens = content_tokens[:max_input_tokens-
|
|
|
748 |
content_tokens += assist_prompt_tokens
|
749 |
round_input = content_tokens + round_input
|
750 |
|
@@ -760,27 +793,33 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
760 |
round_input = []
|
761 |
elif message['role'] == 'assistant':
|
762 |
assist_content = f"{message['content']}"
|
763 |
-
content_tokens = assist_prompt_tokens +
|
764 |
-
|
|
|
|
|
|
|
765 |
elif message['role'] == 'system':
|
766 |
assert i == len(messages) - 1
|
767 |
user_content = f"{message['content']}\n"
|
768 |
-
content_tokens = tokenizer.encode(
|
|
|
769 |
round_input = user_prompt_tokens + content_tokens + round_input
|
770 |
if len(total_input) + len(round_input) > max_input_tokens:
|
771 |
break
|
772 |
else:
|
773 |
total_input = round_input + total_input
|
774 |
else:
|
775 |
-
raise ValueError(
|
|
|
776 |
total_input = torch.LongTensor([total_input]).to(self.device)
|
777 |
return total_input
|
778 |
|
779 |
@torch.no_grad()
|
780 |
def chat(self, tokenizer, messages: List[dict], stream=False,
|
781 |
-
generation_config: Optional[GenerationConfig]=None):
|
782 |
generation_config = generation_config or self.generation_config
|
783 |
-
input_ids = self._build_chat_input(
|
|
|
784 |
if stream:
|
785 |
from transformers import TextIteratorStreamer
|
786 |
from threading import Thread
|
@@ -788,7 +827,8 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
788 |
self.__class__.generate = PreTrainedModel.generate
|
789 |
|
790 |
def stream_generator():
|
791 |
-
generation_kwargs = dict(
|
|
|
792 |
thread = Thread(target=self.generate, kwargs=generation_kwargs)
|
793 |
thread.start()
|
794 |
for next_text in streamer:
|
@@ -797,8 +837,10 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
797 |
return stream_generator()
|
798 |
else:
|
799 |
self.__class__.generate = PreTrainedModel.generate # disable stream
|
800 |
-
outputs = self.generate(
|
801 |
-
|
|
|
|
|
802 |
return response
|
803 |
|
804 |
def prepare_inputs_for_generation(
|
@@ -835,7 +877,8 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
835 |
def _reorder_cache(past_key_values, beam_idx):
|
836 |
reordered_past = ()
|
837 |
for layer_past in past_key_values:
|
838 |
-
reordered_past += (tuple(past_state.index_select(0, beam_idx)
|
|
|
839 |
return reordered_past
|
840 |
|
841 |
def quantize(self, bit_length: int):
|
@@ -844,37 +887,44 @@ class XverseForCausalLM(XversePreTrainedModel):
|
|
844 |
for layer in self.model.layers:
|
845 |
layer.self_attn.q_proj = QuantizationLinear(
|
846 |
bit_length=bit_length,
|
847 |
-
weight=layer.self_attn.q_proj.weight.to(
|
|
|
848 |
device=layer.self_attn.q_proj.weight.device,
|
849 |
)
|
850 |
layer.self_attn.k_proj = QuantizationLinear(
|
851 |
bit_length=bit_length,
|
852 |
-
weight=layer.self_attn.k_proj.weight.to(
|
|
|
853 |
device=layer.self_attn.k_proj.weight.device
|
854 |
)
|
855 |
layer.self_attn.v_proj = QuantizationLinear(
|
856 |
bit_length=bit_length,
|
857 |
-
weight=layer.self_attn.v_proj.weight.to(
|
|
|
858 |
device=layer.self_attn.v_proj.weight.device
|
859 |
)
|
860 |
layer.self_attn.o_proj = QuantizationLinear(
|
861 |
bit_length=bit_length,
|
862 |
-
weight=layer.self_attn.o_proj.weight.to(
|
|
|
863 |
device=layer.self_attn.o_proj.weight.device
|
864 |
)
|
865 |
layer.mlp.gate_proj = QuantizationLinear(
|
866 |
bit_length=bit_length,
|
867 |
-
weight=layer.mlp.gate_proj.weight.to(
|
|
|
868 |
device=layer.mlp.gate_proj.weight.device
|
869 |
)
|
870 |
layer.mlp.down_proj = QuantizationLinear(
|
871 |
bit_length=bit_length,
|
872 |
-
weight=layer.mlp.down_proj.weight.to(
|
|
|
873 |
device=layer.mlp.down_proj.weight.device
|
874 |
)
|
875 |
layer.mlp.up_proj = QuantizationLinear(
|
876 |
bit_length=bit_length,
|
877 |
-
weight=layer.mlp.up_proj.weight.to(
|
|
|
878 |
device=layer.mlp.up_proj.weight.device
|
879 |
)
|
880 |
|
|
|
33 |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
34 |
from transformers.generation.utils import GenerationConfig
|
35 |
from .configuration_xverse import XverseConfig
|
36 |
+
from xformers import ops as xops
|
37 |
|
38 |
|
39 |
logger = logging.get_logger(__name__)
|
|
|
49 |
Make causal mask used for bi-directional self-attention.
|
50 |
"""
|
51 |
bsz, tgt_len = input_ids_shape
|
52 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(
|
53 |
+
torch.finfo(dtype).min, device=device), device=device)
|
54 |
mask_cond = torch.arange(mask.size(-1), device=device)
|
55 |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
56 |
mask = mask.to(dtype)
|
57 |
|
58 |
if past_key_values_length > 0:
|
59 |
+
mask = torch.cat([torch.zeros(
|
60 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
61 |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
62 |
|
63 |
|
|
|
69 |
bsz, src_len = mask.size()
|
70 |
tgt_len = tgt_len if tgt_len is not None else src_len
|
71 |
|
72 |
+
expanded_mask = mask[:, None, None, :].expand(
|
73 |
+
bsz, 1, tgt_len, src_len).to(dtype)
|
74 |
|
75 |
inverted_mask = 1.0 - expanded_mask
|
76 |
|
|
|
88 |
|
89 |
def forward(self, hidden_states):
|
90 |
input_dtype = hidden_states.dtype
|
91 |
+
variance = hidden_states.to(torch.float32).pow(
|
92 |
+
2).mean(-1, keepdim=True)
|
93 |
+
hidden_states = hidden_states * \
|
94 |
+
torch.rsqrt(variance + self.variance_epsilon)
|
95 |
|
96 |
return (self.weight * hidden_states).to(input_dtype)
|
97 |
|
|
|
99 |
class XverseRotaryEmbedding(torch.nn.Module):
|
100 |
def __init__(self, dim, max_position_embeddings=2048, base=500000, device=None):
|
101 |
super().__init__()
|
102 |
+
self.base = base
|
103 |
+
self.dim = dim
|
104 |
+
self.max_position_embeddings = max_position_embeddings
|
105 |
+
inv_freq = 1.0 / \
|
106 |
+
(base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
107 |
self.register_buffer("inv_freq", inv_freq)
|
108 |
|
109 |
# Build here to make `torch.jit.trace` work.
|
110 |
self.max_seq_len_cached = max_position_embeddings
|
111 |
+
|
112 |
+
t = torch.arange(self.max_seq_len_cached,
|
113 |
+
device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
114 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
115 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
116 |
emb = torch.cat((freqs, freqs), dim=-1)
|
117 |
+
self.register_buffer("cos_cached", emb.cos()[
|
118 |
+
None, None, :, :], persistent=False)
|
119 |
+
self.register_buffer("sin_cached", emb.sin()[
|
120 |
+
None, None, :, :], persistent=False)
|
121 |
|
122 |
def forward(self, x, seq_len=None):
|
123 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
124 |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
125 |
if seq_len > self.max_seq_len_cached:
|
126 |
+
|
127 |
+
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
|
128 |
+
dim = self.dim
|
129 |
+
alpha = (seq_len / (self.max_position_embeddings/2) - 1)
|
130 |
+
base = self.base * alpha ** (dim / (dim-2))
|
131 |
+
ntk_inv_freq = 1.0 / \
|
132 |
+
(base ** (torch.arange(0, dim, 2).float().to(x.device) / dim))
|
133 |
+
|
134 |
+
freqs = torch.einsum("i,j->ij", t, ntk_inv_freq)
|
135 |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
136 |
+
cos_cached = emb.cos()[None, None, :, :]
|
137 |
+
sin_cached = emb.sin()[None, None, :, :]
|
138 |
+
return (
|
139 |
+
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
140 |
+
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
|
141 |
+
)
|
142 |
+
|
143 |
return (
|
144 |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
145 |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
|
|
149 |
def rotate_half(x):
|
150 |
"""Rotates half the hidden dims of the input."""
|
151 |
x1 = x[..., : x.shape[-1] // 2]
|
152 |
+
x2 = x[..., x.shape[-1] // 2:]
|
153 |
return torch.cat((-x2, x1), dim=-1)
|
154 |
|
155 |
|
|
|
197 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
198 |
f" and `num_heads`: {self.num_heads})."
|
199 |
)
|
200 |
+
self.q_proj = nn.Linear(
|
201 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
202 |
+
self.k_proj = nn.Linear(
|
203 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
204 |
+
self.v_proj = nn.Linear(
|
205 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
206 |
+
self.o_proj = nn.Linear(
|
207 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
208 |
+
self.rotary_emb = XverseRotaryEmbedding(
|
209 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
210 |
|
211 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
212 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
219 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
220 |
output_attentions: bool = False,
|
221 |
use_cache: bool = False,
|
222 |
+
dropout: Optional[float] = 0.1,
|
223 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
bsz, q_len, _ = hidden_states.size() # [bsz, q_len, hidden_size]
|
|
|
|
|
|
|
226 |
|
227 |
+
query_states = self.q_proj(hidden_states).view(
|
228 |
+
bsz, q_len, self.num_heads, self.head_dim)
|
229 |
+
key_states = self.k_proj(hidden_states).view(
|
230 |
+
bsz, q_len, self.num_heads, self.head_dim)
|
231 |
+
value_states = self.v_proj(hidden_states).view(
|
232 |
+
bsz, q_len, self.num_heads, self.head_dim)
|
233 |
+
# [bsz, q_len, nh, hd]
|
234 |
|
235 |
+
query_states = query_states.transpose(1, 2)
|
236 |
+
key_states = key_states.transpose(1, 2)
|
237 |
+
value_states = value_states.transpose(1, 2)
|
238 |
+
# [bsz, nh, q_len, hd]
|
239 |
|
240 |
+
kv_seq_len = key_states.shape[-2] # q_len
|
241 |
+
n_head = key_states.shape[-3] # nh
|
|
|
|
|
|
|
242 |
|
243 |
+
assert past_key_value is None, "past_key_value is not supported"
|
244 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
245 |
+
query_states, key_states = apply_rotary_pos_emb(
|
246 |
+
query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
assert not output_attentions, "output_attentions is not supported"
|
249 |
+
assert not use_cache, "use_cache is not supported"
|
|
|
250 |
|
251 |
+
"""
|
252 |
+
Input tensors must be in format ``[B, M, H, K]``, where B is the batch size, M
|
253 |
+
the sequence length, H the number of heads, and K the embeding size per head
|
254 |
+
"""
|
255 |
+
query_states = query_states.transpose(1, 2)
|
256 |
+
key_states = key_states.transpose(1, 2)
|
257 |
+
value_states = value_states.transpose(1, 2)
|
258 |
|
259 |
+
attn_output = xops.memory_efficient_attention(
|
260 |
+
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask(), p=dropout
|
261 |
+
)
|
262 |
+
|
263 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
264 |
attn_output = self.o_proj(attn_output)
|
265 |
+
return attn_output, None, None
|
|
|
|
|
|
|
|
|
266 |
|
267 |
|
268 |
class XverseDecoderLayer(nn.Module):
|
|
|
275 |
intermediate_size=config.intermediate_size,
|
276 |
hidden_act=config.hidden_act,
|
277 |
)
|
278 |
+
self.input_layernorm = XverseRMSNorm(
|
279 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
280 |
+
self.post_attention_layernorm = XverseRMSNorm(
|
281 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
282 |
|
283 |
def forward(
|
284 |
self,
|
|
|
443 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
444 |
"""
|
445 |
|
446 |
+
|
447 |
@add_start_docstrings(
|
448 |
"The bare Xverse Model outputting raw hidden-states without any specific head on top.",
|
449 |
XVERSE_START_DOCSTRING,
|
|
|
461 |
self.padding_idx = config.pad_token_id
|
462 |
self.vocab_size = config.vocab_size
|
463 |
|
464 |
+
self.embed_tokens = nn.Embedding(
|
465 |
+
config.vocab_size, config.hidden_size, self.padding_idx)
|
466 |
+
self.layers = nn.ModuleList(
|
467 |
+
[XverseDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
468 |
self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
469 |
|
470 |
self.gradient_checkpointing = False
|
|
|
496 |
inputs_embeds.device
|
497 |
)
|
498 |
combined_attention_mask = (
|
499 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask +
|
500 |
+
combined_attention_mask
|
501 |
)
|
502 |
|
503 |
return combined_attention_mask
|
|
|
525 |
|
526 |
# retrieve input_ids and inputs_embeds
|
527 |
if input_ids is not None and inputs_embeds is not None:
|
528 |
+
raise ValueError(
|
529 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
530 |
elif input_ids is not None:
|
531 |
batch_size, seq_length = input_ids.shape
|
532 |
elif inputs_embeds is not None:
|
533 |
batch_size, seq_length, _ = inputs_embeds.shape
|
534 |
else:
|
535 |
+
raise ValueError(
|
536 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
537 |
|
538 |
seq_length_with_past = seq_length
|
539 |
past_key_values_length = 0
|
|
|
559 |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
560 |
)
|
561 |
attention_mask = self._prepare_decoder_attention_mask(
|
562 |
+
attention_mask, (batch_size,
|
563 |
+
seq_length), inputs_embeds, past_key_values_length
|
564 |
)
|
565 |
|
566 |
hidden_states = inputs_embeds
|
|
|
612 |
hidden_states = layer_outputs[0]
|
613 |
|
614 |
if use_cache:
|
615 |
+
next_decoder_cache += (
|
616 |
+
layer_outputs[2 if output_attentions else 1],)
|
617 |
|
618 |
if output_attentions:
|
619 |
all_self_attns += (layer_outputs[1],)
|
|
|
640 |
super().__init__(config)
|
641 |
self.model = XverseModel(config)
|
642 |
|
643 |
+
self.lm_head = nn.Linear(
|
644 |
+
config.hidden_size, config.vocab_size, bias=False)
|
645 |
|
646 |
# Initialize weights and apply final processing
|
647 |
self.post_init()
|
|
|
752 |
attentions=outputs.attentions,
|
753 |
)
|
754 |
|
755 |
+
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int = 2048):
|
756 |
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
|
757 |
max_input_tokens = self.config.max_position_embeddings - max_new_tokens
|
758 |
+
max_input_tokens = max(
|
759 |
+
self.config.max_position_embeddings // 2, max_input_tokens)
|
760 |
+
max_input_tokens = min(
|
761 |
+
self.config.max_tokenizer_truncation, max_input_tokens)
|
762 |
|
763 |
total_input, round_input = [], []
|
764 |
+
user_prompt_tokens = tokenizer.encode(
|
765 |
+
"Human: ", return_token_type_ids=False)
|
766 |
+
exec_prompt_tokens = tokenizer.encode(
|
767 |
+
"Exec: ", return_token_type_ids=False)
|
768 |
+
assist_prompt_tokens = tokenizer.encode(
|
769 |
+
"Assistant: ", return_token_type_ids=False)
|
770 |
assist_prompt_len = len(assist_prompt_tokens)
|
771 |
|
772 |
for i, message in enumerate(messages[::-1]):
|
773 |
if message['role'] == 'user' or message['role'] == 'exec':
|
774 |
user_content = f"{message['content']}\n\n"
|
775 |
content_tokens = user_prompt_tokens + tokenizer.encode(user_content, return_token_type_ids=False) if message['role'] == 'user' else \
|
776 |
+
exec_prompt_tokens + \
|
777 |
+
tokenizer.encode(user_content, return_token_type_ids=False)
|
778 |
if i == 0:
|
779 |
+
content_tokens = content_tokens[:max_input_tokens -
|
780 |
+
assist_prompt_len]
|
781 |
content_tokens += assist_prompt_tokens
|
782 |
round_input = content_tokens + round_input
|
783 |
|
|
|
793 |
round_input = []
|
794 |
elif message['role'] == 'assistant':
|
795 |
assist_content = f"{message['content']}"
|
796 |
+
content_tokens = assist_prompt_tokens + \
|
797 |
+
tokenizer.encode(
|
798 |
+
assist_content, return_token_type_ids=False)
|
799 |
+
round_input = content_tokens + \
|
800 |
+
[self.generation_config.eos_token_id] + round_input
|
801 |
elif message['role'] == 'system':
|
802 |
assert i == len(messages) - 1
|
803 |
user_content = f"{message['content']}\n"
|
804 |
+
content_tokens = tokenizer.encode(
|
805 |
+
user_content, return_token_type_ids=False)
|
806 |
round_input = user_prompt_tokens + content_tokens + round_input
|
807 |
if len(total_input) + len(round_input) > max_input_tokens:
|
808 |
break
|
809 |
else:
|
810 |
total_input = round_input + total_input
|
811 |
else:
|
812 |
+
raise ValueError(
|
813 |
+
f"message role not supported yet: {message['role']}")
|
814 |
total_input = torch.LongTensor([total_input]).to(self.device)
|
815 |
return total_input
|
816 |
|
817 |
@torch.no_grad()
|
818 |
def chat(self, tokenizer, messages: List[dict], stream=False,
|
819 |
+
generation_config: Optional[GenerationConfig] = None):
|
820 |
generation_config = generation_config or self.generation_config
|
821 |
+
input_ids = self._build_chat_input(
|
822 |
+
tokenizer, messages, generation_config.max_new_tokens)
|
823 |
if stream:
|
824 |
from transformers import TextIteratorStreamer
|
825 |
from threading import Thread
|
|
|
827 |
self.__class__.generate = PreTrainedModel.generate
|
828 |
|
829 |
def stream_generator():
|
830 |
+
generation_kwargs = dict(
|
831 |
+
inputs=input_ids, generation_config=generation_config, streamer=streamer)
|
832 |
thread = Thread(target=self.generate, kwargs=generation_kwargs)
|
833 |
thread.start()
|
834 |
for next_text in streamer:
|
|
|
837 |
return stream_generator()
|
838 |
else:
|
839 |
self.__class__.generate = PreTrainedModel.generate # disable stream
|
840 |
+
outputs = self.generate(
|
841 |
+
input_ids, generation_config=generation_config)
|
842 |
+
response = tokenizer.decode(
|
843 |
+
outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
844 |
return response
|
845 |
|
846 |
def prepare_inputs_for_generation(
|
|
|
877 |
def _reorder_cache(past_key_values, beam_idx):
|
878 |
reordered_past = ()
|
879 |
for layer_past in past_key_values:
|
880 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx)
|
881 |
+
for past_state in layer_past),)
|
882 |
return reordered_past
|
883 |
|
884 |
def quantize(self, bit_length: int):
|
|
|
887 |
for layer in self.model.layers:
|
888 |
layer.self_attn.q_proj = QuantizationLinear(
|
889 |
bit_length=bit_length,
|
890 |
+
weight=layer.self_attn.q_proj.weight.to(
|
891 |
+
torch.cuda.current_device()),
|
892 |
device=layer.self_attn.q_proj.weight.device,
|
893 |
)
|
894 |
layer.self_attn.k_proj = QuantizationLinear(
|
895 |
bit_length=bit_length,
|
896 |
+
weight=layer.self_attn.k_proj.weight.to(
|
897 |
+
torch.cuda.current_device()),
|
898 |
device=layer.self_attn.k_proj.weight.device
|
899 |
)
|
900 |
layer.self_attn.v_proj = QuantizationLinear(
|
901 |
bit_length=bit_length,
|
902 |
+
weight=layer.self_attn.v_proj.weight.to(
|
903 |
+
torch.cuda.current_device()),
|
904 |
device=layer.self_attn.v_proj.weight.device
|
905 |
)
|
906 |
layer.self_attn.o_proj = QuantizationLinear(
|
907 |
bit_length=bit_length,
|
908 |
+
weight=layer.self_attn.o_proj.weight.to(
|
909 |
+
torch.cuda.current_device()),
|
910 |
device=layer.self_attn.o_proj.weight.device
|
911 |
)
|
912 |
layer.mlp.gate_proj = QuantizationLinear(
|
913 |
bit_length=bit_length,
|
914 |
+
weight=layer.mlp.gate_proj.weight.to(
|
915 |
+
torch.cuda.current_device()),
|
916 |
device=layer.mlp.gate_proj.weight.device
|
917 |
)
|
918 |
layer.mlp.down_proj = QuantizationLinear(
|
919 |
bit_length=bit_length,
|
920 |
+
weight=layer.mlp.down_proj.weight.to(
|
921 |
+
torch.cuda.current_device()),
|
922 |
device=layer.mlp.down_proj.weight.device
|
923 |
)
|
924 |
layer.mlp.up_proj = QuantizationLinear(
|
925 |
bit_length=bit_length,
|
926 |
+
weight=layer.mlp.up_proj.weight.to(
|
927 |
+
torch.cuda.current_device()),
|
928 |
device=layer.mlp.up_proj.weight.device
|
929 |
)
|
930 |
|
ms_wrapper.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from modelscope.models.base import TorchModel
|
6 |
+
from modelscope.preprocessors.base import Preprocessor
|
7 |
+
from modelscope.pipelines.base import Model, Pipeline
|
8 |
+
from modelscope.utils.config import Config
|
9 |
+
from modelscope.pipelines.builder import PIPELINES
|
10 |
+
from modelscope.preprocessors.builder import PREPROCESSORS
|
11 |
+
from modelscope.models.builder import MODELS
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
13 |
+
|
14 |
+
@MODELS.register_module('text-generation', module_name='XVERSE-13B')
|
15 |
+
class XVERSE13BTextGeneration(TorchModel):
|
16 |
+
|
17 |
+
def __init__(self, model_dir, *args, **kwargs):
|
18 |
+
super().__init__(model_dir, *args, **kwargs)
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
20 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
|
21 |
+
self.model = self.model.eval()
|
22 |
+
|
23 |
+
def forward(self, inputs, **forward_params):
|
24 |
+
inputs = self.tokenizer(inputs, return_tensors='pt').input_ids
|
25 |
+
inputs = inputs.cuda()
|
26 |
+
generated_ids = self.model.generate(inputs, eos_token_id=self.tokenizer.eos_token_id, **forward_params)
|
27 |
+
return self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
28 |
+
|
29 |
+
|
30 |
+
@PIPELINES.register_module('text-generation', module_name='XVERSE-13B-pipeline')
|
31 |
+
class XVERSE13BTextGenerationPipeline(Pipeline):
|
32 |
+
""" Give simple introduction to this pipeline.
|
33 |
+
|
34 |
+
Examples:
|
35 |
+
|
36 |
+
>>> from modelscope.pipelines import pipeline
|
37 |
+
>>> input = "Hello, ModelScope!"
|
38 |
+
>>> my_pipeline = pipeline('text-generation', 'xverse/XVERSE-13B')
|
39 |
+
>>> result = my_pipeline(input)
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, model, **kwargs):
|
44 |
+
"""
|
45 |
+
use `model` and `preprocessor` to create a custom pipeline for prediction
|
46 |
+
Args:
|
47 |
+
model: model id on modelscope hub.
|
48 |
+
preprocessor: the class of method be init_preprocessor
|
49 |
+
"""
|
50 |
+
assert isinstance(model, str) or isinstance(model, Model), \
|
51 |
+
'model must be a single str or Model'
|
52 |
+
if isinstance(model, str):
|
53 |
+
pipe_model = Model.from_pretrained(model)
|
54 |
+
elif isinstance(model, Model):
|
55 |
+
pipe_model = model
|
56 |
+
else:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
super().__init__(model=pipe_model, **kwargs)
|
60 |
+
|
61 |
+
def _sanitize_parameters(self, **pipeline_parameters):
|
62 |
+
"""
|
63 |
+
this method should sanitize the keyword args to preprocessor params,
|
64 |
+
forward params and postprocess params on '__call__' or '_process_single' method
|
65 |
+
considered to be a normal classmethod with default implementation / output
|
66 |
+
|
67 |
+
Default Returns:
|
68 |
+
Dict[str, str]: preprocess_params = {}
|
69 |
+
Dict[str, str]: forward_params = {}
|
70 |
+
Dict[str, str]: postprocess_params = pipeline_parameters
|
71 |
+
"""
|
72 |
+
return {}, pipeline_parameters, {}
|
73 |
+
|
74 |
+
def preprocess(self, inputs, **preprocess_params):
|
75 |
+
return inputs
|
76 |
+
|
77 |
+
def forward(self, inputs, **forward_params):
|
78 |
+
""" Provide default implementation using self.model and user can reimplement it
|
79 |
+
"""
|
80 |
+
output = super().forward(inputs, **forward_params)
|
81 |
+
return {'text': output}
|
82 |
+
|
83 |
+
def postprocess(self, inputs):
|
84 |
+
""" If current pipeline support model reuse, common postprocess
|
85 |
+
code should be write here.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
inputs: input data
|
89 |
+
|
90 |
+
Return:
|
91 |
+
dict of results: a dict containing outputs of model, each
|
92 |
+
output should have the standard output name.
|
93 |
+
"""
|
94 |
+
return inputs
|
95 |
+
|