ChloeAuYeung
commited on
Commit
•
a6d67b5
1
Parent(s):
465974b
upload files
Browse files- README.md +188 -0
- config.json +33 -0
- configuration_xverse.py +204 -0
- modeling_xverse.py +1521 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +5 -0
README.md
CHANGED
@@ -1,3 +1,191 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
|
4 |
+
inference: false
|
5 |
+
|
6 |
---
|
7 |
+
|
8 |
+
# XVERSE-MoE-A4.2B
|
9 |
+
|
10 |
+
## 更新信息
|
11 |
+
- **[2024/04/02]** 发布 MoE 架构的 **XVERSE-MoE-A4.2B** 底座模型,Chat 对齐模型将在后续发布。
|
12 |
+
|
13 |
+
## Update Information
|
14 |
+
- **[2024/04/02]** Released **XVERSE-MoE-A4.2B** MoE base model, the Chat version model will be released later.
|
15 |
+
|
16 |
+
## 模型介绍
|
17 |
+
|
18 |
+
**XVERSE-MoE-A4.2B** 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),使用混合专家模型(MoE,Mixture-of-experts)架构,模型的总参数规模为 258 亿,实际激活的参数量为 42 亿,本次开源的模型为底座模型 **XVERSE-MoE-A4.2B**,主要特点如下:
|
19 |
+
|
20 |
+
- **模型结构**:XVERSE-MoE-A4.2B 为 Decoder-only 的 Transformer 架构,将密集模型的 FFN 层扩展为专家层,不同于传统 MoE 中每个专家的大小与标准 FFN 相同(如Mixtral 8x7B ),使用了更细粒度的专家,每个专家是标准 FFN 大小的 1/4,并设置了共享专家(Shared Expert)和非共享专家(Non-shared Expert)两类,共享专家在计算时始终被激活,非共享专家通过 Router 选择性激活。
|
21 |
+
- **训练数据**:构建了 3.2 万亿 token 的高质量、多样化的数据对模型进行充分训练,包含中、英、俄、西等 40 多种语言,通过精细化设置不同类型数据的采样比例,使得中英两种语言表现优异,也能兼顾其他语言效果;模型使用 8K 长度的训练样本进行训练。
|
22 |
+
- **训练框架**:针对 MoE 模型中独有的专家路由和权重计算逻辑,进行了深入定制优化,开发出一套高效的融合算子,以提升计算效率。同时,为解决 MoE 模型显存占用和通信量大的挑战,设计了计算、通信和 CPU-Offload 的 Overlap 处理方式,从而提高整体吞吐量。
|
23 |
+
|
24 |
+
**XVERSE-MoE-A4.2B** 的模型大小、架构和学习率如下:
|
25 |
+
|
26 |
+
| total params | activated params | n_layers | d_model | n_heads | d_ff | n_non_shared_experts | n_shared_experts | top_k | lr |
|
27 |
+
| :----------: | :--------------: | :------: | :-----: | :-----: | :--: | :------------------: | :--------------: | :---: | :----: |
|
28 |
+
| 25.8B | 4.2B | 28 | 2560 | 32 | 1728 | 64 | 2 | 6 | 3.5e−4 |
|
29 |
+
|
30 |
+
## Model Introduction
|
31 |
+
|
32 |
+
**XVERSE-MoE-A4.2B** is a multilingual large language model, independently developed by Shenzhen Yuanxiang Technology which is using Mixture-of-experts (MoE) architecture. The total parameter scale of the model is 25.8 billion, with an actual number of activated parameters being 4.2 billion. The models released this time is the base model **XVERSE-MoE-A4.2B**. Its key features are as follows:
|
33 |
+
|
34 |
+
- **Model Structure**: XVERSE-MoE-A4.2B uses the mainstream Decoder-only Transformer network structure that extends the FFN layer of dense models to expert layers. Unlike traditional MoE model where each expert has the same size as standard FFN (such as Mixtral 8x7B), it uses more fine-grained experts, with each expert being 1/4 the size of a standard FFN. It includes shared experts and non-shared experts, where shared experts are always activated during computation, and non-shared experts are selectively activated through a Router.
|
35 |
+
- **Training Data**: The model has been thoroughly trained on a diversified and high-quality dataset consisting of 3.2 trillion of tokens, including more than 40 languages such as Chinese, English, Russian, and Spanish. The sampling ratio of different types of data is finely set, which makes the performance of Chinese and English excellent, and also takes into account the effect of other languages; The model is trained using training samples of length 8k.
|
36 |
+
- **Training Framework**: We conducted in-depth customized optimization for the unique expert routing and weight calculation logic in the MoE model, developed an efficient fusion operator to improve computational efficiency. At the same time, to address the challenges of high memory consumption and communication volume in the MoE model, we designed a processing method for overlapping computation, communication, and CPU-Offload to increase overall throughput.
|
37 |
+
|
38 |
+
The models sizes, architectures and learning rate of **XVERSE-MoE-A4.2B** are showed as follows:
|
39 |
+
|
40 |
+
| total params | activated params | n_layers | d_model | n_heads | d_ff | n_non_shared_experts | n_shared_experts | top_k | lr |
|
41 |
+
| :----------: | :--------------: | :------: | :-----: | :-----: | :--: | :------------------: | :--------------: | :---: | :----: |
|
42 |
+
| 25.8B | 4.2B | 28 | 2560 | 32 | 1728 | 64 | 2 | 6 | 3.5e−4 |
|
43 |
+
|
44 |
+
## 评测结果
|
45 |
+
|
46 |
+
为了综合评估模型的性能,我们在一系列标准数据集上进行了全面测试,包括C-Eval、CMMLU、Gaokao-Bench、MMLU、AGIEval、RACE-M、CommonSenseQA、PIQA、GSM8K和HumanEval。这些评估覆盖了模型在多个领域的能力,具体包括中文问答、英文问答、语言理解、常识问答、逻辑推理、数学问题解答以及编程能力。评估结果如下:
|
47 |
+
|
48 |
+
| 数据集 | XVERSE-MoE-A4.2B-2.7T | XVERSE-13B-2-2.7T | Baichuan2-13B | Llama2-13B | Llama1-65B | XVERSE-7B | DeepSeek-7B | Mistral-7B | Gemma-7B |
|
49 |
+
| ------------------------ | :-------------------: | :---------------: | :-----------: | :--------: | :--------: | :-------: | :---------: | :--------: | :------: |
|
50 |
+
| C-Eval | 60.5 | 62.0 | 58.1 | 35.6 | 38.8 | 57.1 | 45.0 | 45.1 | 50.0 |
|
51 |
+
| CMMLU | 64.5 | 65.4 | 62.0 | 38.4 | 40.6 | 61.3 | 47.2 | 44.9 | 50.5 |
|
52 |
+
| Gaokao-Bench<sup>1</sup> | 60.3 | 65.3 | 54.3 | 35.4 | 38.9 | 61.7 | 35.4 | 40.2 | 42.3 |
|
53 |
+
| MMLU | 60.2 | 60.0 | 59.2 | 54.8 | 63.4 | 56.6 | 48.2 | 62.5 | 64.3 |
|
54 |
+
| AGIEval<sup>1</sup> | 48.0 | 52.4 | 48.2 | 33.4 | 42.4 | 46.9 | 26.4 | 41.2 | 41.7 |
|
55 |
+
| RACE-M | 75.4 | 82.4 | 68.9 | 63.0 | 67.9 | 79.0 | 63.2 | 67.5 | 80.2 |
|
56 |
+
| CommonSenseQA | 70.0 | 68.0 | 65.6 | 67.3 | 74.0 | 64.1 | 56.4 | 68.8 | 74.0 |
|
57 |
+
| PIQA | 81.4 | 79.8 | 78.5 | 80.5 | 82.8 | 76.7 | 79.2 | 82.2 | 81.2 |
|
58 |
+
| GSM8K | 51.2 | 52.7 | 52.7 | 28.7 | 50.9 | 19.3 | 17.4 | 35.4 | 46.4 |
|
59 |
+
| HumanEval | 29.9 | 32.3 | 17.1 | 18.3 | 23.7 | 10.4 | 26.2 | 26.2 | 32.3 |
|
60 |
+
|
61 |
+
> <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup>
|
62 |
+
|
63 |
+
对于上述所有比较模型,我们优先汇报其官方公布的结果。在缺少官方结果的情况下,我们采用了 [OpenCompass 榜单](https://opencompass.org.cn/leaderboard-llm)的报告结果。其他结果则来自于我们自行执行的评估流程所获得的数据。
|
64 |
+
对于 MMLU ,我们采用作者提供的[评测工具](https://github.com/hendrycks/test),C-Eval、AGIEval、GAOKAO-Bench 与 MMLU 的评测方式相同,其余评测数据集使用 [OpenCompass 评估框架](https://github.com/open-compass/OpenCompass/)进行评估。
|
65 |
+
|
66 |
+
## Model Evaluation
|
67 |
+
|
68 |
+
To comprehensively assess the performance of the model, we conducted extensive testing across a range of standard datasets, including C-Eval, CMMLU, Gaokao-Bench, MMLU, AGIEval, RACE-M, CommonSenseQA, PIQA, GSM8K and HumanEval. These evaluations spanned multiple capabilities of the model, specifically including Chinese question answering, English question answering, language comprehension, common sense questioning, logical reasoning, mathematical problem-solving, and coding ability. The results of the evaluations are as follows:
|
69 |
+
|
70 |
+
| Dataset | XVERSE-MoE-A4.2B-2.7T | XVERSE-13B-2-2.7T | Baichuan2-13B | Llama2-13B | Llama1-65B | XVERSE-7B | DeepSeek-7B | Mistral-7B | Gemma-7B |
|
71 |
+
| ------------------------ | :-------------------: | :---------------: | :-----------: | :--------: | :--------: | :-------: | :---------: | :--------: | :------: |
|
72 |
+
| C-Eval | 60.5 | 62.0 | 58.1 | 35.6 | 38.8 | 57.1 | 45.0 | 45.1 | 50.0 |
|
73 |
+
| CMMLU | 64.5 | 65.4 | 62.0 | 38.4 | 40.6 | 61.3 | 47.2 | 44.9 | 50.5 |
|
74 |
+
| Gaokao-Bench<sup>1</sup> | 60.3 | 65.3 | 54.3 | 35.4 | 38.9 | 61.7 | 35.4 | 40.2 | 42.3 |
|
75 |
+
| MMLU | 60.2 | 60.0 | 59.2 | 54.8 | 63.4 | 56.6 | 48.2 | 62.5 | 64.3 |
|
76 |
+
| AGIEval<sup>1</sup> | 48.0 | 52.4 | 48.2 | 33.4 | 42.4 | 46.9 | 26.4 | 41.2 | 41.7 |
|
77 |
+
| RACE-M | 75.4 | 82.4 | 68.9 | 63.0 | 67.9 | 79.0 | 63.2 | 67.5 | 80.2 |
|
78 |
+
| CommonSenseQA | 70.0 | 68.0 | 65.6 | 67.3 | 74.0 | 64.1 | 56.4 | 68.8 | 74.0 |
|
79 |
+
| PIQA | 81.4 | 79.8 | 78.5 | 80.5 | 82.8 | 76.7 | 79.2 | 82.2 | 81.2 |
|
80 |
+
| GSM8K | 51.2 | 52.7 | 52.7 | 28.7 | 50.9 | 19.3 | 17.4 | 35.4 | 46.4 |
|
81 |
+
| HumanEval | 29.9 | 32.3 | 17.1 | 18.3 | 23.7 | 10.4 | 26.2 | 26.2 | 32.3 |
|
82 |
+
|
83 |
+
> <sup>1: Tests are conducted only on single-answer multiple-choice questions, thus excluding fill-in-the-blanks, open-ended questions, and multiple-answer multiple-choice questions.</sup>
|
84 |
+
|
85 |
+
For all the comparison models mentioned above, we prioritize the disclosure of their officially published results. In the absence of official data, we refer to the reported outcomes from [OpenCompass Leaderboard](https://opencompass.org.cn/leaderboard-llm). Results not covered by the aforementioned sources are derived from our own evaluation pipline.
|
86 |
+
For MMLU, we adopt the [evaluation tools](https://github.com/hendrycks/test) provided by the authors, C-Eval, AGIEval, GAOKAO-Bench are the same as MMLU. For the remaining evaluation datasets, the [OpenCompass](https://github.com/open-compass/OpenCompass/) is employed for evaluation.
|
87 |
+
|
88 |
+
## 使用方法
|
89 |
+
|
90 |
+
### 环境安装
|
91 |
+
|
92 |
+
1. 下载本仓库:
|
93 |
+
|
94 |
+
```shell
|
95 |
+
git clone https://github.com/xverse-ai/XVERSE-MoE-A4.2B
|
96 |
+
cd XVERSE-MoE-A4.2B
|
97 |
+
```
|
98 |
+
|
99 |
+
2. 使用 pip 安装依赖:
|
100 |
+
|
101 |
+
```shell
|
102 |
+
pip install -r requirements.txt
|
103 |
+
```
|
104 |
+
### Transformers 加载方式
|
105 |
+
|
106 |
+
可通过以下代码加载 XVERSE-MoE-A4.2B 模型来进行推理:
|
107 |
+
|
108 |
+
```python
|
109 |
+
import torch
|
110 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained("xverse/XVERSE-MoE-A4.2B")
|
112 |
+
model = AutoModelForCausalLM.from_pretrained("xverse/XVERSE-MoE-A4.2B", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
|
113 |
+
model = model.eval()
|
114 |
+
inputs = tokenizer('北京的景点:故宫、天坛、万里长城等。\n深圳的景点:', return_tensors='pt').input_ids
|
115 |
+
inputs = inputs.cuda()
|
116 |
+
generated_ids = model.generate(inputs, max_new_tokens=64, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.1)
|
117 |
+
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
|
118 |
+
```
|
119 |
+
|
120 |
+
### 网页 Demo
|
121 |
+
|
122 |
+
可通过以下代码启动一个web server,在浏览器输入访问地址后,可使用 XVERSE-MoE-A4.2B 模型进行推理:
|
123 |
+
|
124 |
+
```shell
|
125 |
+
python text_generation_demo.py --port='port' --model_path='/path/to/model/' --tokenizer_path='/path/to/tokenizer/'
|
126 |
+
```
|
127 |
+
|
128 |
+
## Usage
|
129 |
+
|
130 |
+
### Environment Setup
|
131 |
+
|
132 |
+
1. Clone this repository:
|
133 |
+
|
134 |
+
```shell
|
135 |
+
git clone https://github.com/xverse-ai/XVERSE-MoE-A4.2B
|
136 |
+
cd XVERSE-MoE-A4.2B
|
137 |
+
```
|
138 |
+
|
139 |
+
2. Install the dependencies using pip:
|
140 |
+
|
141 |
+
```shell
|
142 |
+
pip install -r requirements.txt
|
143 |
+
```
|
144 |
+
|
145 |
+
### Loading with Transformers
|
146 |
+
|
147 |
+
The XVERSE-MoE-A4.2B model can be loaded for inference using the following code:
|
148 |
+
|
149 |
+
```python
|
150 |
+
import torch
|
151 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained("xverse/XVERSE-MoE-A4.2B")
|
153 |
+
model = AutoModelForCausalLM.from_pretrained("xverse/XVERSE-MoE-A4.2B", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
|
154 |
+
model = model.eval()
|
155 |
+
inputs = tokenizer('北京的景点:故宫、天坛、万里长城等。\n深圳的景点:', return_tensors='pt').input_ids
|
156 |
+
inputs = inputs.cuda()
|
157 |
+
generated_ids = model.generate(inputs, max_new_tokens=64, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.1)
|
158 |
+
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
|
159 |
+
```
|
160 |
+
|
161 |
+
### Web Demo
|
162 |
+
|
163 |
+
The following code can be used to start a web server. By entering the access address in the browser, you can perform inference with the XVERSE-MoE-A4.2B model:
|
164 |
+
|
165 |
+
```shell
|
166 |
+
python chat_demo.py --port='port' --model_path='/path/to/model/' --tokenizer_path='/path/to/tokenizer/'
|
167 |
+
```
|
168 |
+
|
169 |
+
## 局限性与免责申明
|
170 |
+
|
171 |
+
XVERSE-MoE-A4.2B 与其他所有 LLM 一样,在某些情况下可能会产生不准确、有偏见或其他令人反感的内容。因此,请谨慎使用模型生成的内容,请勿将生成的有害内容进行传播,在部署任何 XVERSE-MoE-A4.2B 的应用之前,开发人员应根据其具体应用对模型进行安全测试和调优。
|
172 |
+
|
173 |
+
我们强烈警告不要将 XVERSE-MoE-A4.2B 模型用于制造或传播有害信息,或进行任何可能损害公众、国家、社会安全或违反法规的活动。如果使用 XVERSE-MoE-A4.2B 模型产生任何问题,无论是数据安全问题、公共舆论风险,还是模型被误解、滥用、传播或不合规使用所引发的任何风险和问题,我们将不承担任何责任。
|
174 |
+
|
175 |
+
## 模型开源协议
|
176 |
+
|
177 |
+
使用本仓库的源码需要遵循 [Apache-2.0](LICENSE) 开源协议,使用 XVERSE-MoE-A4.2B 的模型权重则需要遵循[模型许可协议](MODEL_LICENSE.pdf)。
|
178 |
+
|
179 |
+
XVERSE-MoE-A4.2B 模型权重对学术研究**完全开放**,并且支持**免费商用**。如需申请商业许可证,请填写【[申请表](https://chat.xverse.cn/home/business.html)】,如有其他问题或合作,请联系 <opensource@xverse.cn>。
|
180 |
+
|
181 |
+
## Limitations and Disclaimer
|
182 |
+
|
183 |
+
Like all other Large Language Models (LLMs), XVERSE-MoE-A4.2B may produce inaccurate, biased, or otherwise offensive content under certain circumstances. Therefore, please use the content generated by the model with caution and refrain from disseminating harmful content. Before deploying any application of XVERSE-MoE-A4.2B, developers should conduct safety tests and optimization of the model according to its specific application.
|
184 |
+
|
185 |
+
We strongly warn against the use of the XVERSE-MoE-A4.2B model for producing or spreading harmful information, or conducting any activities that might harm the public, national, or social security, or violate regulations. We assume no responsibility for any problems arising from the use of the XVERSE-MoE-A4.2B model, whether it be data security issues, public opinion risks, or any risks and issues caused by misunderstanding, misuse, dissemination, or non-compliance with the model.
|
186 |
+
|
187 |
+
## Open Source License
|
188 |
+
|
189 |
+
The use of the source code in this repository must follow the [Apache-2.0](LICENSE) open-source license, while the use of the model weights of XVERSE-MoE-A4.2B needs to adhere to the [Model License Agreement](MODEL_LICENSE.pdf).
|
190 |
+
|
191 |
+
The XVERSE-MoE-A4.2B model weights are **fully open** to academic research and support **free commercial use**. To apply for a commercial license, please fill in the [application form](https://chat.xverse.cn/home/business.html). For other questions or collaborations, please contact <opensource@xverse.cn>.
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XverseForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_xverse.XverseConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_xverse.XverseForCausalLM"
|
8 |
+
},
|
9 |
+
"pad_token_id": 1,
|
10 |
+
"bos_token_id": 2,
|
11 |
+
"eos_token_id": 3,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 2560,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1728,
|
16 |
+
"max_position_embeddings": 8192,
|
17 |
+
"model_type": "xverse",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"rope_theta": 500000,
|
23 |
+
"moe_top_k": 6,
|
24 |
+
"num_experts": 64,
|
25 |
+
"num_shared_experts": 2,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"router_aux_loss_coef": 0.01,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.38.2",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 100534
|
32 |
+
}
|
33 |
+
|
configuration_xverse.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" XVERSE model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
XVERSE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class XverseConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`XverseModel`]. It is used to instantiate an Xverse
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the XVERSE-13B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 100278):
|
43 |
+
Vocabulary size of the XVERSE model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`XverseModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 5120):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 13824):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 40):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 40):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
54 |
+
The non-linear activation function (function or string) in the decoder.
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
56 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
57 |
+
just in case (e.g., 512 or 1024 or 2048).
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
|
61 |
+
The epsilon used by the rms normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
+
relevant if `config.is_decoder=True`.
|
65 |
+
pad_token_id (`int`, *optional*):
|
66 |
+
Padding token id.
|
67 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
68 |
+
Beginning of stream token id.
|
69 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
70 |
+
End of stream token id.
|
71 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
72 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
73 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
74 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
75 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
76 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether to tie weight embeddings
|
78 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
79 |
+
The base period of the RoPE embeddings.
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
83 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
89 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
moe_top_k (`int`, defaults to 6):
|
93 |
+
Number of selected experts.
|
94 |
+
num_experts (`int`, defaults to 64):
|
95 |
+
Number of routed experts.
|
96 |
+
num_shared_experts (`int`, defaults to 64):
|
97 |
+
Number of shared experts, None for no shared experts.
|
98 |
+
output_router_logits (`bool`, optional):
|
99 |
+
Whether or not to return the router logits.
|
100 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
101 |
+
The aux loss factor for the total loss.
|
102 |
+
Example:
|
103 |
+
|
104 |
+
```python
|
105 |
+
>>> from transformers import XverseModel, XverseConfig
|
106 |
+
|
107 |
+
>>> # Initializing a Xverse XVERSE-13B style configuration
|
108 |
+
>>> configuration = XverseConfig()
|
109 |
+
|
110 |
+
>>> # Initializing a model from the XVERSE-13B style configuration
|
111 |
+
>>> model = XverseModel(configuration)
|
112 |
+
|
113 |
+
>>> # Accessing the model configuration
|
114 |
+
>>> configuration = model.config
|
115 |
+
```"""
|
116 |
+
model_type = "xverse"
|
117 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_size=100278,
|
122 |
+
hidden_size=5120,
|
123 |
+
intermediate_size=13824,
|
124 |
+
num_hidden_layers=40,
|
125 |
+
num_attention_heads=40,
|
126 |
+
num_key_value_heads=None,
|
127 |
+
hidden_act="silu",
|
128 |
+
max_position_embeddings=8192,
|
129 |
+
initializer_range=0.02,
|
130 |
+
rms_norm_eps=1e-6,
|
131 |
+
use_cache=True,
|
132 |
+
pad_token_id=None,
|
133 |
+
bos_token_id=1,
|
134 |
+
eos_token_id=2,
|
135 |
+
pretraining_tp=1,
|
136 |
+
tie_word_embeddings=False,
|
137 |
+
rope_theta=10000.0,
|
138 |
+
rope_scaling=None,
|
139 |
+
attention_bias=False,
|
140 |
+
attention_dropout=0.0,
|
141 |
+
moe_top_k=6,
|
142 |
+
num_experts=64,
|
143 |
+
num_shared_experts=2,
|
144 |
+
output_router_logits=False,
|
145 |
+
router_aux_loss_coef=0.01,
|
146 |
+
**kwargs,
|
147 |
+
):
|
148 |
+
self.vocab_size = vocab_size
|
149 |
+
self.max_position_embeddings = max_position_embeddings
|
150 |
+
self.hidden_size = hidden_size
|
151 |
+
self.intermediate_size = intermediate_size
|
152 |
+
self.num_hidden_layers = num_hidden_layers
|
153 |
+
self.num_attention_heads = num_attention_heads
|
154 |
+
|
155 |
+
# for backward compatibility
|
156 |
+
if num_key_value_heads is None:
|
157 |
+
num_key_value_heads = num_attention_heads
|
158 |
+
|
159 |
+
self.num_key_value_heads = num_key_value_heads
|
160 |
+
self.hidden_act = hidden_act
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.rms_norm_eps = rms_norm_eps
|
163 |
+
self.pretraining_tp = pretraining_tp
|
164 |
+
self.use_cache = use_cache
|
165 |
+
self.rope_theta = rope_theta
|
166 |
+
self.rope_scaling = rope_scaling
|
167 |
+
self._rope_scaling_validation()
|
168 |
+
self.attention_bias = attention_bias
|
169 |
+
self.attention_dropout = attention_dropout
|
170 |
+
|
171 |
+
self.moe_top_k = moe_top_k
|
172 |
+
self.num_experts = num_experts
|
173 |
+
self.num_shared_experts = num_shared_experts
|
174 |
+
self.output_router_logits = output_router_logits
|
175 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
176 |
+
|
177 |
+
super().__init__(
|
178 |
+
pad_token_id=pad_token_id,
|
179 |
+
bos_token_id=bos_token_id,
|
180 |
+
eos_token_id=eos_token_id,
|
181 |
+
tie_word_embeddings=tie_word_embeddings,
|
182 |
+
**kwargs,
|
183 |
+
)
|
184 |
+
|
185 |
+
def _rope_scaling_validation(self):
|
186 |
+
"""
|
187 |
+
Validate the `rope_scaling` configuration.
|
188 |
+
"""
|
189 |
+
if self.rope_scaling is None:
|
190 |
+
return
|
191 |
+
|
192 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
193 |
+
raise ValueError(
|
194 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
195 |
+
f"got {self.rope_scaling}"
|
196 |
+
)
|
197 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
198 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
199 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
202 |
+
)
|
203 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
204 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
modeling_xverse.py
ADDED
@@ -0,0 +1,1521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch xverse model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
33 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
MoeModelOutputWithPast,
|
36 |
+
MoeCausalLMOutputWithPast
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
40 |
+
from transformers.utils import (
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_flash_attn_2_available,
|
44 |
+
is_flash_attn_greater_or_equal_2_10,
|
45 |
+
logging,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
from .configuration_xverse import XverseConfig
|
49 |
+
|
50 |
+
|
51 |
+
if is_flash_attn_2_available():
|
52 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
53 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CONFIG_FOR_DOC = "XverseConfig"
|
59 |
+
|
60 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
61 |
+
def load_balancing_loss_func(
|
62 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
63 |
+
) -> float:
|
64 |
+
r"""
|
65 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
66 |
+
|
67 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
68 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
69 |
+
experts is too unbalanced.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
73 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
74 |
+
shape [batch_size X sequence_length, num_experts].
|
75 |
+
attention_mask (`torch.Tensor`, None):
|
76 |
+
The attention_mask used in forward function
|
77 |
+
shape [batch_size X sequence_length] if not None.
|
78 |
+
num_experts (`int`, *optional*):
|
79 |
+
Number of experts
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
The auxiliary loss.
|
83 |
+
"""
|
84 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
85 |
+
return 0
|
86 |
+
|
87 |
+
if isinstance(gate_logits, tuple):
|
88 |
+
compute_device = gate_logits[0].device
|
89 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
90 |
+
|
91 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
92 |
+
|
93 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
94 |
+
|
95 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
96 |
+
|
97 |
+
if attention_mask is None:
|
98 |
+
# Compute the percentage of tokens routed to each experts
|
99 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
100 |
+
|
101 |
+
# Compute the average probability of routing to these experts
|
102 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
103 |
+
else:
|
104 |
+
batch_size, sequence_length = attention_mask.shape
|
105 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
106 |
+
|
107 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
108 |
+
expert_attention_mask = (
|
109 |
+
attention_mask[None, :, :, None, None]
|
110 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
111 |
+
.reshape(-1, top_k, num_experts)
|
112 |
+
.to(compute_device)
|
113 |
+
)
|
114 |
+
|
115 |
+
# Compute the percentage of tokens routed to each experts
|
116 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
117 |
+
expert_attention_mask, dim=0
|
118 |
+
)
|
119 |
+
|
120 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
121 |
+
router_per_expert_attention_mask = (
|
122 |
+
attention_mask[None, :, :, None]
|
123 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
124 |
+
.reshape(-1, num_experts)
|
125 |
+
.to(compute_device)
|
126 |
+
)
|
127 |
+
|
128 |
+
# Compute the average probability of routing to these experts
|
129 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
130 |
+
router_per_expert_attention_mask, dim=0
|
131 |
+
)
|
132 |
+
|
133 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
134 |
+
return overall_loss * num_experts
|
135 |
+
|
136 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
137 |
+
def _get_unpad_data(attention_mask):
|
138 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
139 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
140 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
141 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
142 |
+
return (
|
143 |
+
indices,
|
144 |
+
cu_seqlens,
|
145 |
+
max_seqlen_in_batch,
|
146 |
+
)
|
147 |
+
|
148 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Xverse
|
149 |
+
class XverseRMSNorm(nn.Module):
|
150 |
+
def __init__(self, hidden_size, eps=1e-6):
|
151 |
+
"""
|
152 |
+
XverseRMSNorm is equivalent to T5LayerNorm
|
153 |
+
"""
|
154 |
+
super().__init__()
|
155 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
156 |
+
self.variance_epsilon = eps
|
157 |
+
|
158 |
+
def forward(self, hidden_states):
|
159 |
+
input_dtype = hidden_states.dtype
|
160 |
+
hidden_states = hidden_states.to(torch.float32)
|
161 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
162 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
163 |
+
return self.weight * hidden_states.to(input_dtype)
|
164 |
+
|
165 |
+
|
166 |
+
ALL_LAYERNORM_LAYERS.append(XverseRMSNorm)
|
167 |
+
|
168 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Xverse
|
169 |
+
class XverseRotaryEmbedding(nn.Module):
|
170 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
171 |
+
super().__init__()
|
172 |
+
self.scaling_factor = scaling_factor
|
173 |
+
self.dim = dim
|
174 |
+
self.max_position_embeddings = max_position_embeddings
|
175 |
+
self.base = base
|
176 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
177 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
178 |
+
# For BC we register cos and sin cached
|
179 |
+
self.max_seq_len_cached = max_position_embeddings
|
180 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
181 |
+
t = t / self.scaling_factor
|
182 |
+
freqs = torch.outer(t, self.inv_freq)
|
183 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
184 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
185 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
186 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
187 |
+
|
188 |
+
@property
|
189 |
+
def sin_cached(self):
|
190 |
+
logger.warning_once(
|
191 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
192 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
193 |
+
)
|
194 |
+
return self._sin_cached
|
195 |
+
|
196 |
+
@property
|
197 |
+
def cos_cached(self):
|
198 |
+
logger.warning_once(
|
199 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
200 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
201 |
+
)
|
202 |
+
return self._cos_cached
|
203 |
+
|
204 |
+
@torch.no_grad()
|
205 |
+
def forward(self, x, position_ids, seq_len=None):
|
206 |
+
if seq_len is not None:
|
207 |
+
logger.warning_once("The `seq_len` argument is deprecated and unused. It will be removed in v4.39.")
|
208 |
+
|
209 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
210 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
211 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
212 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
213 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
214 |
+
device_type = x.device.type
|
215 |
+
device_type = device_type if isinstance(device_type, str) else "cpu"
|
216 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
217 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
218 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
219 |
+
cos = emb.cos()
|
220 |
+
sin = emb.sin()
|
221 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
222 |
+
|
223 |
+
|
224 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Xverse
|
225 |
+
class XverseLinearScalingRotaryEmbedding(XverseRotaryEmbedding):
|
226 |
+
"""XverseRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
227 |
+
|
228 |
+
def forward(self, x, position_ids, seq_len=None):
|
229 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
230 |
+
position_ids = position_ids.float() / self.scaling_factor
|
231 |
+
cos, sin = super().forward(x, position_ids, seq_len)
|
232 |
+
return cos, sin
|
233 |
+
|
234 |
+
|
235 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Xverse
|
236 |
+
class XverseDynamicNTKScalingRotaryEmbedding(XverseRotaryEmbedding):
|
237 |
+
"""XverseRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
238 |
+
|
239 |
+
def forward(self, x, position_ids, seq_len=None):
|
240 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
241 |
+
seq_len = torch.max(position_ids) + 1
|
242 |
+
if seq_len > self.max_position_embeddings:
|
243 |
+
base = self.base * (
|
244 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
245 |
+
) ** (self.dim / (self.dim - 2))
|
246 |
+
inv_freq = 1.0 / (
|
247 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
248 |
+
)
|
249 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
250 |
+
|
251 |
+
cos, sin = super().forward(x, position_ids, seq_len)
|
252 |
+
return cos, sin
|
253 |
+
|
254 |
+
|
255 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
256 |
+
def rotate_half(x):
|
257 |
+
"""Rotates half the hidden dims of the input."""
|
258 |
+
x1 = x[..., : x.shape[-1] // 2]
|
259 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
260 |
+
return torch.cat((-x2, x1), dim=-1)
|
261 |
+
|
262 |
+
|
263 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
264 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
265 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
q (`torch.Tensor`): The query tensor.
|
269 |
+
k (`torch.Tensor`): The key tensor.
|
270 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
271 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
272 |
+
position_ids (`torch.Tensor`, *optional*):
|
273 |
+
Deprecated and unused.
|
274 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
275 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
276 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
277 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
278 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
279 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
280 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
281 |
+
Returns:
|
282 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
283 |
+
"""
|
284 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
285 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
286 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
287 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
288 |
+
return q_embed, k_embed
|
289 |
+
|
290 |
+
|
291 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Xverse
|
292 |
+
class XverseMLP(nn.Module):
|
293 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None, hidden_act=None):
|
294 |
+
super().__init__()
|
295 |
+
self.config = config
|
296 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
297 |
+
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
298 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
299 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
300 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
301 |
+
self.act_fn = ACT2FN[config.hidden_act] if hidden_act is None else ACT2FN[hidden_act]
|
302 |
+
|
303 |
+
def forward(self, x):
|
304 |
+
if self.config.pretraining_tp > 1:
|
305 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
306 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
307 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
308 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
309 |
+
|
310 |
+
gate_proj = torch.cat(
|
311 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
312 |
+
)
|
313 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
314 |
+
|
315 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
316 |
+
down_proj = [
|
317 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
318 |
+
]
|
319 |
+
down_proj = sum(down_proj)
|
320 |
+
else:
|
321 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
322 |
+
|
323 |
+
return down_proj
|
324 |
+
|
325 |
+
class XverseMoEMLP(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
config: XverseConfig,
|
329 |
+
hidden_size: int,
|
330 |
+
intermediate_size: int,
|
331 |
+
hidden_act: str,
|
332 |
+
):
|
333 |
+
super().__init__()
|
334 |
+
self.config = config
|
335 |
+
self.top_k = config.moe_top_k
|
336 |
+
self.num_experts = config.num_experts
|
337 |
+
self.num_shared_experts = config.num_shared_experts if config.num_shared_experts is not None else None
|
338 |
+
|
339 |
+
self.router = nn.Linear(hidden_size, self.num_experts, bias=False, dtype=torch.float)
|
340 |
+
self.experts = nn.ModuleList([XverseMLP(config, hidden_size, intermediate_size, hidden_act) for _ in range(self.num_experts)])
|
341 |
+
if self.num_shared_experts is not None:
|
342 |
+
self.shared_experts = XverseMLP(config, hidden_size, self.num_shared_experts * intermediate_size, hidden_act)
|
343 |
+
|
344 |
+
def forward(self, hidden_states):
|
345 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
346 |
+
|
347 |
+
final_hidden_states = torch.zeros(
|
348 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
349 |
+
)
|
350 |
+
|
351 |
+
input_dtype = hidden_states.dtype
|
352 |
+
hidden_states = hidden_states.view(-1, hidden_dim).float()
|
353 |
+
|
354 |
+
router_logits = self.router(hidden_states)
|
355 |
+
|
356 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
357 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
358 |
+
|
359 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts)
|
360 |
+
expert_mask = expert_mask.permute(2, 1, 0)
|
361 |
+
|
362 |
+
routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-06)
|
363 |
+
|
364 |
+
routing_weights = routing_weights.to(input_dtype)
|
365 |
+
hidden_states = hidden_states.to(input_dtype)
|
366 |
+
|
367 |
+
for expert_idx, expert_layer in enumerate(self.experts):
|
368 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
369 |
+
|
370 |
+
if top_x.shape[0] == 0:
|
371 |
+
continue
|
372 |
+
|
373 |
+
top_x_list = top_x.tolist()
|
374 |
+
idx_list = idx.tolist()
|
375 |
+
|
376 |
+
current_state = hidden_states[None, top_x_list].view(-1, hidden_dim)
|
377 |
+
current_hidden_states = expert_layer(current_state)
|
378 |
+
current_hidden_states = current_hidden_states * routing_weights[top_x_list, idx_list, None]
|
379 |
+
|
380 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states)
|
381 |
+
|
382 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
383 |
+
|
384 |
+
if self.num_shared_experts is not None:
|
385 |
+
hidden_states = hidden_states.view(batch_size, sequence_length, hidden_dim)
|
386 |
+
shared_hidden = self.shared_experts(hidden_states)
|
387 |
+
final_hidden_states = final_hidden_states + shared_hidden
|
388 |
+
|
389 |
+
return final_hidden_states, router_logits
|
390 |
+
|
391 |
+
|
392 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
393 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
394 |
+
"""
|
395 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
396 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
397 |
+
"""
|
398 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
399 |
+
if n_rep == 1:
|
400 |
+
return hidden_states
|
401 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
402 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
403 |
+
|
404 |
+
|
405 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Xverse
|
406 |
+
class XverseAttention(nn.Module):
|
407 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
408 |
+
|
409 |
+
def __init__(self, config: XverseConfig, layer_idx: Optional[int] = None):
|
410 |
+
super().__init__()
|
411 |
+
self.config = config
|
412 |
+
self.layer_idx = layer_idx
|
413 |
+
if layer_idx is None:
|
414 |
+
logger.warning_once(
|
415 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
416 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
417 |
+
"when creating this class."
|
418 |
+
)
|
419 |
+
|
420 |
+
self.attention_dropout = config.attention_dropout
|
421 |
+
self.hidden_size = config.hidden_size
|
422 |
+
self.num_heads = config.num_attention_heads
|
423 |
+
self.head_dim = self.hidden_size // self.num_heads
|
424 |
+
self.num_key_value_heads = config.num_key_value_heads
|
425 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
426 |
+
self.max_position_embeddings = config.max_position_embeddings
|
427 |
+
self.rope_theta = config.rope_theta
|
428 |
+
self.is_causal = True
|
429 |
+
|
430 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
431 |
+
raise ValueError(
|
432 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
433 |
+
f" and `num_heads`: {self.num_heads})."
|
434 |
+
)
|
435 |
+
|
436 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
437 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
438 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
439 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
440 |
+
self._init_rope()
|
441 |
+
|
442 |
+
def _init_rope(self):
|
443 |
+
if self.config.rope_scaling is None:
|
444 |
+
self.rotary_emb = XverseRotaryEmbedding(
|
445 |
+
self.head_dim,
|
446 |
+
max_position_embeddings=self.max_position_embeddings,
|
447 |
+
base=self.rope_theta,
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
scaling_type = self.config.rope_scaling["type"]
|
451 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
452 |
+
if scaling_type == "linear":
|
453 |
+
self.rotary_emb = XverseLinearScalingRotaryEmbedding(
|
454 |
+
self.head_dim,
|
455 |
+
max_position_embeddings=self.max_position_embeddings,
|
456 |
+
scaling_factor=scaling_factor,
|
457 |
+
base=self.rope_theta,
|
458 |
+
)
|
459 |
+
elif scaling_type == "dynamic":
|
460 |
+
self.rotary_emb = XverseDynamicNTKScalingRotaryEmbedding(
|
461 |
+
self.head_dim,
|
462 |
+
max_position_embeddings=self.max_position_embeddings,
|
463 |
+
scaling_factor=scaling_factor,
|
464 |
+
base=self.rope_theta,
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
hidden_states: torch.Tensor,
|
472 |
+
attention_mask: Optional[torch.Tensor] = None,
|
473 |
+
position_ids: Optional[torch.LongTensor] = None,
|
474 |
+
past_key_value: Optional[Cache] = None,
|
475 |
+
output_attentions: bool = False,
|
476 |
+
use_cache: bool = False,
|
477 |
+
cache_position: Optional[torch.LongTensor] = None,
|
478 |
+
**kwargs,
|
479 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
480 |
+
bsz, q_len, _ = hidden_states.size()
|
481 |
+
|
482 |
+
if self.config.pretraining_tp > 1:
|
483 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
484 |
+
query_slices = self.q_proj.weight.split(
|
485 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
486 |
+
)
|
487 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
488 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
489 |
+
|
490 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
491 |
+
query_states = torch.cat(query_states, dim=-1)
|
492 |
+
|
493 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
494 |
+
key_states = torch.cat(key_states, dim=-1)
|
495 |
+
|
496 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
497 |
+
value_states = torch.cat(value_states, dim=-1)
|
498 |
+
|
499 |
+
else:
|
500 |
+
query_states = self.q_proj(hidden_states)
|
501 |
+
key_states = self.k_proj(hidden_states)
|
502 |
+
value_states = self.v_proj(hidden_states)
|
503 |
+
|
504 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
505 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
506 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
507 |
+
|
508 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
509 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
510 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
511 |
+
|
512 |
+
if past_key_value is not None:
|
513 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
514 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
515 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
516 |
+
|
517 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
518 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
519 |
+
|
520 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
521 |
+
|
522 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
523 |
+
causal_mask = attention_mask
|
524 |
+
if cache_position is not None:
|
525 |
+
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
|
526 |
+
attn_weights = attn_weights + causal_mask
|
527 |
+
|
528 |
+
# upcast attention to fp32
|
529 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
530 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
531 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
532 |
+
|
533 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
534 |
+
raise ValueError(
|
535 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
536 |
+
f" {attn_output.size()}"
|
537 |
+
)
|
538 |
+
|
539 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
540 |
+
|
541 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
542 |
+
|
543 |
+
if self.config.pretraining_tp > 1:
|
544 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
545 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
546 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
547 |
+
else:
|
548 |
+
attn_output = self.o_proj(attn_output)
|
549 |
+
|
550 |
+
if not output_attentions:
|
551 |
+
attn_weights = None
|
552 |
+
|
553 |
+
return attn_output, attn_weights, past_key_value
|
554 |
+
|
555 |
+
|
556 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Xverse
|
557 |
+
class XverseFlashAttention2(XverseAttention):
|
558 |
+
"""
|
559 |
+
xverse flash attention module. This module inherits from `XverseAttention` as the weights of the module stays
|
560 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
561 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
562 |
+
"""
|
563 |
+
|
564 |
+
def __init__(self, *args, **kwargs):
|
565 |
+
super().__init__(*args, **kwargs)
|
566 |
+
|
567 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
568 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
569 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
570 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
571 |
+
|
572 |
+
def forward(
|
573 |
+
self,
|
574 |
+
hidden_states: torch.Tensor,
|
575 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
576 |
+
position_ids: Optional[torch.LongTensor] = None,
|
577 |
+
past_key_value: Optional[Cache] = None,
|
578 |
+
output_attentions: bool = False,
|
579 |
+
use_cache: bool = False,
|
580 |
+
cache_position: Optional[torch.LongTensor] = None,
|
581 |
+
**kwargs,
|
582 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
583 |
+
output_attentions = False
|
584 |
+
|
585 |
+
bsz, q_len, _ = hidden_states.size()
|
586 |
+
|
587 |
+
query_states = self.q_proj(hidden_states)
|
588 |
+
key_states = self.k_proj(hidden_states)
|
589 |
+
value_states = self.v_proj(hidden_states)
|
590 |
+
|
591 |
+
# Flash attention requires the input to have the shape
|
592 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
593 |
+
# therefore we just need to keep the original shape
|
594 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
595 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
596 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
597 |
+
|
598 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
599 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
600 |
+
|
601 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
602 |
+
|
603 |
+
if past_key_value is not None:
|
604 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
605 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
606 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
607 |
+
|
608 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
609 |
+
# to be able to avoid many of these transpose/reshape/view.
|
610 |
+
query_states = query_states.transpose(1, 2)
|
611 |
+
key_states = key_states.transpose(1, 2)
|
612 |
+
value_states = value_states.transpose(1, 2)
|
613 |
+
|
614 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
615 |
+
|
616 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
617 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
618 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
619 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
620 |
+
# in fp32. (XverseRMSNorm handles it correctly)
|
621 |
+
|
622 |
+
input_dtype = query_states.dtype
|
623 |
+
if input_dtype == torch.float32:
|
624 |
+
if torch.is_autocast_enabled():
|
625 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
626 |
+
# Handle the case where the model is quantized
|
627 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
628 |
+
target_dtype = self.config._pre_quantization_dtype
|
629 |
+
else:
|
630 |
+
target_dtype = self.q_proj.weight.dtype
|
631 |
+
|
632 |
+
logger.warning_once(
|
633 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
634 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
635 |
+
f" {target_dtype}."
|
636 |
+
)
|
637 |
+
|
638 |
+
query_states = query_states.to(target_dtype)
|
639 |
+
key_states = key_states.to(target_dtype)
|
640 |
+
value_states = value_states.to(target_dtype)
|
641 |
+
|
642 |
+
attn_output = self._flash_attention_forward(
|
643 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
644 |
+
)
|
645 |
+
|
646 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
647 |
+
attn_output = self.o_proj(attn_output)
|
648 |
+
|
649 |
+
if not output_attentions:
|
650 |
+
attn_weights = None
|
651 |
+
|
652 |
+
return attn_output, attn_weights, past_key_value
|
653 |
+
|
654 |
+
def _flash_attention_forward(
|
655 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
656 |
+
):
|
657 |
+
"""
|
658 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
659 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
660 |
+
|
661 |
+
Args:
|
662 |
+
query_states (`torch.Tensor`):
|
663 |
+
Input query states to be passed to Flash Attention API
|
664 |
+
key_states (`torch.Tensor`):
|
665 |
+
Input key states to be passed to Flash Attention API
|
666 |
+
value_states (`torch.Tensor`):
|
667 |
+
Input value states to be passed to Flash Attention API
|
668 |
+
attention_mask (`torch.Tensor`):
|
669 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
670 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
671 |
+
dropout (`int`, *optional*):
|
672 |
+
Attention dropout
|
673 |
+
softmax_scale (`float`, *optional*):
|
674 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
675 |
+
"""
|
676 |
+
if not self._flash_attn_uses_top_left_mask:
|
677 |
+
causal = self.is_causal
|
678 |
+
else:
|
679 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in XverseFlashAttention2 __init__.
|
680 |
+
causal = self.is_causal and query_length != 1
|
681 |
+
|
682 |
+
# Contains at least one padding token in the sequence
|
683 |
+
if attention_mask is not None:
|
684 |
+
batch_size = query_states.shape[0]
|
685 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
686 |
+
query_states, key_states, value_states, attention_mask, query_length
|
687 |
+
)
|
688 |
+
|
689 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
690 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
691 |
+
|
692 |
+
attn_output_unpad = flash_attn_varlen_func(
|
693 |
+
query_states,
|
694 |
+
key_states,
|
695 |
+
value_states,
|
696 |
+
cu_seqlens_q=cu_seqlens_q,
|
697 |
+
cu_seqlens_k=cu_seqlens_k,
|
698 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
699 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
700 |
+
dropout_p=dropout,
|
701 |
+
softmax_scale=softmax_scale,
|
702 |
+
causal=causal,
|
703 |
+
)
|
704 |
+
|
705 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
706 |
+
else:
|
707 |
+
attn_output = flash_attn_func(
|
708 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
709 |
+
)
|
710 |
+
|
711 |
+
return attn_output
|
712 |
+
|
713 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
714 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
715 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
716 |
+
|
717 |
+
key_layer = index_first_axis(
|
718 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
719 |
+
)
|
720 |
+
value_layer = index_first_axis(
|
721 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
722 |
+
)
|
723 |
+
if query_length == kv_seq_len:
|
724 |
+
query_layer = index_first_axis(
|
725 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
726 |
+
)
|
727 |
+
cu_seqlens_q = cu_seqlens_k
|
728 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
729 |
+
indices_q = indices_k
|
730 |
+
elif query_length == 1:
|
731 |
+
max_seqlen_in_batch_q = 1
|
732 |
+
cu_seqlens_q = torch.arange(
|
733 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
734 |
+
) # There is a memcpy here, that is very bad.
|
735 |
+
indices_q = cu_seqlens_q[:-1]
|
736 |
+
query_layer = query_layer.squeeze(1)
|
737 |
+
else:
|
738 |
+
# The -q_len: slice assumes left padding.
|
739 |
+
attention_mask = attention_mask[:, -query_length:]
|
740 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
741 |
+
|
742 |
+
return (
|
743 |
+
query_layer,
|
744 |
+
key_layer,
|
745 |
+
value_layer,
|
746 |
+
indices_q,
|
747 |
+
(cu_seqlens_q, cu_seqlens_k),
|
748 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
749 |
+
)
|
750 |
+
|
751 |
+
|
752 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Xverse
|
753 |
+
class XverseSdpaAttention(XverseAttention):
|
754 |
+
"""
|
755 |
+
xverse attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
756 |
+
`XverseAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
757 |
+
SDPA API.
|
758 |
+
"""
|
759 |
+
|
760 |
+
# Adapted from XverseAttention.forward
|
761 |
+
def forward(
|
762 |
+
self,
|
763 |
+
hidden_states: torch.Tensor,
|
764 |
+
attention_mask: Optional[torch.Tensor] = None,
|
765 |
+
position_ids: Optional[torch.LongTensor] = None,
|
766 |
+
past_key_value: Optional[Cache] = None,
|
767 |
+
output_attentions: bool = False,
|
768 |
+
use_cache: bool = False,
|
769 |
+
cache_position: Optional[torch.LongTensor] = None,
|
770 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
771 |
+
if output_attentions:
|
772 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
773 |
+
logger.warning_once(
|
774 |
+
"XverseMoEModel is using XverseSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
775 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
776 |
+
)
|
777 |
+
return super().forward(
|
778 |
+
hidden_states=hidden_states,
|
779 |
+
attention_mask=attention_mask,
|
780 |
+
position_ids=position_ids,
|
781 |
+
past_key_value=past_key_value,
|
782 |
+
output_attentions=output_attentions,
|
783 |
+
use_cache=use_cache,
|
784 |
+
cache_position=cache_position,
|
785 |
+
)
|
786 |
+
|
787 |
+
bsz, q_len, _ = hidden_states.size()
|
788 |
+
|
789 |
+
query_states = self.q_proj(hidden_states)
|
790 |
+
key_states = self.k_proj(hidden_states)
|
791 |
+
value_states = self.v_proj(hidden_states)
|
792 |
+
|
793 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
794 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
795 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
796 |
+
|
797 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
798 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
799 |
+
|
800 |
+
# In case static cache is used, it is an instance attribute.
|
801 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
802 |
+
|
803 |
+
if past_key_value is not None:
|
804 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
805 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
806 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
807 |
+
|
808 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
809 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
810 |
+
|
811 |
+
causal_mask = attention_mask
|
812 |
+
if attention_mask is not None and cache_position is not None:
|
813 |
+
causal_mask = causal_mask[:, :, cache_position, : key_states.shape[-2]]
|
814 |
+
|
815 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
816 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
817 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
818 |
+
query_states = query_states.contiguous()
|
819 |
+
key_states = key_states.contiguous()
|
820 |
+
value_states = value_states.contiguous()
|
821 |
+
|
822 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
823 |
+
query_states,
|
824 |
+
key_states,
|
825 |
+
value_states,
|
826 |
+
attn_mask=causal_mask,
|
827 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
828 |
+
)
|
829 |
+
|
830 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
831 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
832 |
+
|
833 |
+
attn_output = self.o_proj(attn_output)
|
834 |
+
|
835 |
+
return attn_output, None, past_key_value
|
836 |
+
|
837 |
+
|
838 |
+
XVERSE_ATTENTION_CLASSES = {
|
839 |
+
"eager": XverseAttention,
|
840 |
+
"flash_attention_2": XverseFlashAttention2,
|
841 |
+
"sdpa": XverseSdpaAttention,
|
842 |
+
}
|
843 |
+
|
844 |
+
|
845 |
+
class XverseMoEDecoderLayer(nn.Module):
|
846 |
+
def __init__(self, config: XverseConfig, layer_idx: int):
|
847 |
+
super().__init__()
|
848 |
+
self.hidden_size = config.hidden_size
|
849 |
+
|
850 |
+
self.self_attn = XVERSE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
851 |
+
|
852 |
+
self.mlp = XverseMoEMLP(
|
853 |
+
config=config,
|
854 |
+
hidden_size=self.hidden_size,
|
855 |
+
intermediate_size=config.intermediate_size,
|
856 |
+
hidden_act=config.hidden_act,
|
857 |
+
)
|
858 |
+
self.input_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
859 |
+
self.post_attention_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
860 |
+
|
861 |
+
def forward(
|
862 |
+
self,
|
863 |
+
hidden_states: torch.Tensor,
|
864 |
+
attention_mask: Optional[torch.Tensor] = None,
|
865 |
+
position_ids: Optional[torch.LongTensor] = None,
|
866 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
867 |
+
output_attentions: Optional[bool] = False,
|
868 |
+
output_router_logits: Optional[bool] = False,
|
869 |
+
use_cache: Optional[bool] = False,
|
870 |
+
cache_position: Optional[torch.LongTensor] = None,
|
871 |
+
**kwargs,
|
872 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
873 |
+
"""
|
874 |
+
Args:
|
875 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
876 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
877 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
878 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
879 |
+
output_attentions (`bool`, *optional*):
|
880 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
881 |
+
returned tensors for more detail.
|
882 |
+
output_router_logits (`bool`, optional): Whether or not to return the router logits.
|
883 |
+
use_cache (`bool`, *optional*):
|
884 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
885 |
+
(see `past_key_values`).
|
886 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
887 |
+
"""
|
888 |
+
if "padding_mask" in kwargs:
|
889 |
+
warnings.warn(
|
890 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
891 |
+
)
|
892 |
+
|
893 |
+
residual = hidden_states
|
894 |
+
|
895 |
+
hidden_states = self.input_layernorm(hidden_states)
|
896 |
+
|
897 |
+
# Self Attention
|
898 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
899 |
+
hidden_states=hidden_states,
|
900 |
+
attention_mask=attention_mask,
|
901 |
+
position_ids=position_ids,
|
902 |
+
past_key_value=past_key_value,
|
903 |
+
output_attentions=output_attentions,
|
904 |
+
use_cache=use_cache,
|
905 |
+
cache_position=cache_position,
|
906 |
+
**kwargs,
|
907 |
+
)
|
908 |
+
hidden_states = residual + hidden_states
|
909 |
+
|
910 |
+
# Fully Connected
|
911 |
+
residual = hidden_states
|
912 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
913 |
+
|
914 |
+
hidden_states, router_logits = self.mlp(hidden_states)
|
915 |
+
# if isinstance(hidden_states, tuple):
|
916 |
+
# hidden_states, router_logits = hidden_states
|
917 |
+
# else:
|
918 |
+
# router_logits = None
|
919 |
+
|
920 |
+
hidden_states = residual + hidden_states
|
921 |
+
|
922 |
+
outputs = (hidden_states,)
|
923 |
+
|
924 |
+
if output_attentions:
|
925 |
+
outputs += (self_attn_weights,)
|
926 |
+
|
927 |
+
if use_cache:
|
928 |
+
outputs += (present_key_value,)
|
929 |
+
|
930 |
+
if output_router_logits:
|
931 |
+
outputs += (router_logits,)
|
932 |
+
|
933 |
+
return outputs
|
934 |
+
|
935 |
+
|
936 |
+
XVERSE_START_DOCSTRING = r"""
|
937 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
938 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
939 |
+
etc.)
|
940 |
+
|
941 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
942 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
943 |
+
and behavior.
|
944 |
+
|
945 |
+
Parameters:
|
946 |
+
config ([`XverseConfig`]):
|
947 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
948 |
+
load the weights associated with the model, only the configuration. Check out the
|
949 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
950 |
+
"""
|
951 |
+
|
952 |
+
|
953 |
+
@add_start_docstrings(
|
954 |
+
"The bare Xverse Model outputting raw hidden-states without any specific head on top.",
|
955 |
+
XVERSE_START_DOCSTRING,
|
956 |
+
)
|
957 |
+
class XversePreTrainedModel(PreTrainedModel):
|
958 |
+
config_class = XverseConfig
|
959 |
+
base_model_prefix = "model"
|
960 |
+
supports_gradient_checkpointing = True
|
961 |
+
_no_split_modules = ["XverseMoEDecoderLayer"]
|
962 |
+
_skip_keys_device_placement = ["past_key_values"]
|
963 |
+
_supports_flash_attn_2 = True
|
964 |
+
_supports_sdpa = True
|
965 |
+
_supports_cache_class = True
|
966 |
+
|
967 |
+
def _init_weights(self, module):
|
968 |
+
std = self.config.initializer_range
|
969 |
+
if isinstance(module, nn.Linear):
|
970 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
971 |
+
if module.bias is not None:
|
972 |
+
module.bias.data.zero_()
|
973 |
+
elif isinstance(module, nn.Embedding):
|
974 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
975 |
+
if module.padding_idx is not None:
|
976 |
+
module.weight.data[module.padding_idx].zero_()
|
977 |
+
|
978 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
979 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
980 |
+
raise ValueError(
|
981 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
982 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
983 |
+
)
|
984 |
+
|
985 |
+
if max_cache_len > self.model.causal_mask.shape[-1] or self.device != self.model.causal_mask.device:
|
986 |
+
causal_mask = torch.full(
|
987 |
+
(max_cache_len, max_cache_len), fill_value=True, device=self.device, dtype=torch.bool
|
988 |
+
)
|
989 |
+
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
990 |
+
|
991 |
+
for layer in self.model.layers:
|
992 |
+
weights = layer.self_attn.o_proj.weight
|
993 |
+
layer.self_attn.past_key_value = cache_cls(
|
994 |
+
self.config, max_batch_size, max_cache_len, device=weights.device, dtype=weights.dtype
|
995 |
+
)
|
996 |
+
|
997 |
+
def _reset_cache(self):
|
998 |
+
for layer in self.model.layers:
|
999 |
+
layer.self_attn.past_key_value = None
|
1000 |
+
|
1001 |
+
|
1002 |
+
XVERSE_INPUTS_DOCSTRING = r"""
|
1003 |
+
Args:
|
1004 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1005 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1006 |
+
it.
|
1007 |
+
|
1008 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1009 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1010 |
+
|
1011 |
+
[What are input IDs?](../glossary#input-ids)
|
1012 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1013 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1014 |
+
|
1015 |
+
- 1 for tokens that are **not masked**,
|
1016 |
+
- 0 for tokens that are **masked**.
|
1017 |
+
|
1018 |
+
[What are attention masks?](../glossary#attention-mask)
|
1019 |
+
|
1020 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1021 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1022 |
+
|
1023 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1024 |
+
`past_key_values`).
|
1025 |
+
|
1026 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1027 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1028 |
+
information on the default strategy.
|
1029 |
+
|
1030 |
+
- 1 indicates the head is **not masked**,
|
1031 |
+
- 0 indicates the head is **masked**.
|
1032 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1033 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1034 |
+
config.n_positions - 1]`.
|
1035 |
+
|
1036 |
+
[What are position IDs?](../glossary#position-ids)
|
1037 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1038 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1039 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1040 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1041 |
+
|
1042 |
+
Two formats are allowed:
|
1043 |
+
- a [`~cache_utils.Cache`] instance;
|
1044 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1045 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1046 |
+
cache format.
|
1047 |
+
|
1048 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1049 |
+
legacy cache format will be returned.
|
1050 |
+
|
1051 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1052 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1053 |
+
of shape `(batch_size, sequence_length)`.
|
1054 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1055 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1056 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1057 |
+
model's internal embedding lookup matrix.
|
1058 |
+
use_cache (`bool`, *optional*):
|
1059 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1060 |
+
`past_key_values`).
|
1061 |
+
output_attentions (`bool`, *optional*):
|
1062 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1063 |
+
tensors for more detail.
|
1064 |
+
output_hidden_states (`bool`, *optional*):
|
1065 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1066 |
+
more detail.
|
1067 |
+
return_dict (`bool`, *optional*):
|
1068 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1069 |
+
"""
|
1070 |
+
|
1071 |
+
|
1072 |
+
@add_start_docstrings(
|
1073 |
+
"The bare xverse Model outputting raw hidden-states without any specific head on top.",
|
1074 |
+
XVERSE_START_DOCSTRING,
|
1075 |
+
)
|
1076 |
+
class XverseMoEModel(XversePreTrainedModel):
|
1077 |
+
"""
|
1078 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`XverseMoEDecoderLayer`]
|
1079 |
+
|
1080 |
+
Args:
|
1081 |
+
config: XverseConfig
|
1082 |
+
"""
|
1083 |
+
|
1084 |
+
def __init__(self, config: XverseConfig):
|
1085 |
+
super().__init__(config)
|
1086 |
+
self.padding_idx = config.pad_token_id
|
1087 |
+
self.vocab_size = config.vocab_size
|
1088 |
+
|
1089 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1090 |
+
self.layers = nn.ModuleList(
|
1091 |
+
[XverseMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1092 |
+
)
|
1093 |
+
self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1094 |
+
self.gradient_checkpointing = False
|
1095 |
+
|
1096 |
+
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
|
1097 |
+
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
|
1098 |
+
causal_mask = torch.full(
|
1099 |
+
(config.max_position_embeddings, config.max_position_embeddings), fill_value=True, dtype=torch.bool
|
1100 |
+
)
|
1101 |
+
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
1102 |
+
# Initialize weights and apply final processing
|
1103 |
+
self.post_init()
|
1104 |
+
|
1105 |
+
def get_input_embeddings(self):
|
1106 |
+
return self.embed_tokens
|
1107 |
+
|
1108 |
+
def set_input_embeddings(self, value):
|
1109 |
+
self.embed_tokens = value
|
1110 |
+
|
1111 |
+
@add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
|
1112 |
+
def forward(
|
1113 |
+
self,
|
1114 |
+
input_ids: torch.LongTensor = None,
|
1115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1116 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1117 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1118 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1119 |
+
use_cache: Optional[bool] = None,
|
1120 |
+
output_attentions: Optional[bool] = None,
|
1121 |
+
output_hidden_states: Optional[bool] = None,
|
1122 |
+
output_router_logits: Optional[bool] = None,
|
1123 |
+
return_dict: Optional[bool] = None,
|
1124 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1125 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1126 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1127 |
+
output_router_logits = (
|
1128 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1129 |
+
)
|
1130 |
+
output_hidden_states = (
|
1131 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1132 |
+
)
|
1133 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1134 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1135 |
+
|
1136 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1137 |
+
raise ValueError(
|
1138 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1142 |
+
logger.warning_once(
|
1143 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1144 |
+
)
|
1145 |
+
use_cache = False
|
1146 |
+
|
1147 |
+
if inputs_embeds is None:
|
1148 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1149 |
+
|
1150 |
+
past_seen_tokens = 0
|
1151 |
+
if use_cache: # kept for BC (cache positions)
|
1152 |
+
if not isinstance(past_key_values, StaticCache):
|
1153 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1154 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
1155 |
+
|
1156 |
+
if cache_position is None:
|
1157 |
+
if isinstance(past_key_values, StaticCache):
|
1158 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
1159 |
+
cache_position = torch.arange(
|
1160 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1161 |
+
)
|
1162 |
+
|
1163 |
+
if position_ids is None:
|
1164 |
+
position_ids = cache_position.unsqueeze(0)
|
1165 |
+
|
1166 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
|
1167 |
+
|
1168 |
+
# embed positions
|
1169 |
+
hidden_states = inputs_embeds
|
1170 |
+
|
1171 |
+
# decoder layers
|
1172 |
+
all_hidden_states = () if output_hidden_states else None
|
1173 |
+
all_self_attns = () if output_attentions else None
|
1174 |
+
all_router_logits = () if output_router_logits else None
|
1175 |
+
next_decoder_cache = None
|
1176 |
+
|
1177 |
+
for decoder_layer in self.layers:
|
1178 |
+
if output_hidden_states:
|
1179 |
+
all_hidden_states += (hidden_states,)
|
1180 |
+
|
1181 |
+
if self.gradient_checkpointing and self.training:
|
1182 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1183 |
+
decoder_layer.__call__,
|
1184 |
+
hidden_states,
|
1185 |
+
causal_mask,
|
1186 |
+
position_ids,
|
1187 |
+
past_key_values,
|
1188 |
+
output_attentions,
|
1189 |
+
output_router_logits,
|
1190 |
+
use_cache,
|
1191 |
+
cache_position,
|
1192 |
+
)
|
1193 |
+
else:
|
1194 |
+
layer_outputs = decoder_layer(
|
1195 |
+
hidden_states,
|
1196 |
+
attention_mask=causal_mask,
|
1197 |
+
position_ids=position_ids,
|
1198 |
+
past_key_value=past_key_values,
|
1199 |
+
output_attentions=output_attentions,
|
1200 |
+
output_router_logits=output_router_logits,
|
1201 |
+
use_cache=use_cache,
|
1202 |
+
cache_position=cache_position,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
hidden_states = layer_outputs[0]
|
1206 |
+
|
1207 |
+
if use_cache:
|
1208 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1209 |
+
|
1210 |
+
if output_attentions:
|
1211 |
+
all_self_attns += (layer_outputs[1],)
|
1212 |
+
|
1213 |
+
if output_router_logits:
|
1214 |
+
all_router_logits += (layer_outputs[-1],)
|
1215 |
+
|
1216 |
+
hidden_states = self.norm(hidden_states)
|
1217 |
+
|
1218 |
+
# add hidden states from the last decoder layer
|
1219 |
+
if output_hidden_states:
|
1220 |
+
all_hidden_states += (hidden_states,)
|
1221 |
+
|
1222 |
+
next_cache = None
|
1223 |
+
if use_cache:
|
1224 |
+
next_cache = (
|
1225 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1226 |
+
)
|
1227 |
+
if not return_dict:
|
1228 |
+
return tuple(v for v in [
|
1229 |
+
hidden_states, next_cache, all_hidden_states, all_self_attns,
|
1230 |
+
all_router_logits
|
1231 |
+
] if v is not None)
|
1232 |
+
|
1233 |
+
return MoeModelOutputWithPast(
|
1234 |
+
last_hidden_state=hidden_states,
|
1235 |
+
past_key_values=next_cache,
|
1236 |
+
hidden_states=all_hidden_states,
|
1237 |
+
attentions=all_self_attns,
|
1238 |
+
router_logits=all_router_logits,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1242 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1243 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1244 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1245 |
+
def _update_causal_mask(self, attention_mask, input_tensor):
|
1246 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1247 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1248 |
+
return attention_mask
|
1249 |
+
return None
|
1250 |
+
|
1251 |
+
batch_size, seq_length = input_tensor.shape[:2]
|
1252 |
+
dtype = input_tensor.dtype
|
1253 |
+
device = input_tensor.device
|
1254 |
+
|
1255 |
+
# support going beyond cached `max_position_embedding`
|
1256 |
+
if seq_length > self.causal_mask.shape[-1]:
|
1257 |
+
causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
|
1258 |
+
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
1259 |
+
|
1260 |
+
# We use the current dtype to avoid any overflows
|
1261 |
+
min_dtype = torch.finfo(dtype).min
|
1262 |
+
causal_mask = self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * min_dtype
|
1263 |
+
|
1264 |
+
causal_mask = causal_mask.to(dtype=dtype, device=device)
|
1265 |
+
if attention_mask is not None and attention_mask.dim() == 2:
|
1266 |
+
mask_length = attention_mask.shape[-1]
|
1267 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1268 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1269 |
+
|
1270 |
+
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
|
1271 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1272 |
+
is_tracing = (
|
1273 |
+
torch.jit.is_tracing()
|
1274 |
+
or isinstance(input_tensor, torch.fx.Proxy)
|
1275 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1276 |
+
)
|
1277 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1278 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
1279 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1280 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1281 |
+
causal_mask = causal_mask.mul(~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)).to(dtype)
|
1282 |
+
|
1283 |
+
return causal_mask
|
1284 |
+
class XverseForCausalLM(XversePreTrainedModel):
|
1285 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1286 |
+
|
1287 |
+
def __init__(self, config):
|
1288 |
+
super().__init__(config)
|
1289 |
+
self.model = XverseMoEModel(config)
|
1290 |
+
self.vocab_size = config.vocab_size
|
1291 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1292 |
+
|
1293 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1294 |
+
self.num_experts = config.num_experts
|
1295 |
+
self.moe_top_k = config.moe_top_k
|
1296 |
+
# Initialize weights and apply final processing
|
1297 |
+
self.post_init()
|
1298 |
+
|
1299 |
+
def get_input_embeddings(self):
|
1300 |
+
return self.model.embed_tokens
|
1301 |
+
|
1302 |
+
def set_input_embeddings(self, value):
|
1303 |
+
self.model.embed_tokens = value
|
1304 |
+
|
1305 |
+
def get_output_embeddings(self):
|
1306 |
+
return self.lm_head
|
1307 |
+
|
1308 |
+
def set_output_embeddings(self, new_embeddings):
|
1309 |
+
self.lm_head = new_embeddings
|
1310 |
+
|
1311 |
+
def set_decoder(self, decoder):
|
1312 |
+
self.model = decoder
|
1313 |
+
|
1314 |
+
def get_decoder(self):
|
1315 |
+
return self.model
|
1316 |
+
|
1317 |
+
@add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
|
1318 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1319 |
+
def forward(
|
1320 |
+
self,
|
1321 |
+
input_ids: torch.LongTensor = None,
|
1322 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1323 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1324 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1325 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1326 |
+
labels: Optional[torch.LongTensor] = None,
|
1327 |
+
use_cache: Optional[bool] = None,
|
1328 |
+
output_attentions: Optional[bool] = None,
|
1329 |
+
output_hidden_states: Optional[bool] = None,
|
1330 |
+
output_router_logits: Optional[bool] = None,
|
1331 |
+
return_dict: Optional[bool] = None,
|
1332 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1333 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1334 |
+
r"""
|
1335 |
+
Args:
|
1336 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1337 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1338 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1339 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1340 |
+
|
1341 |
+
Returns:
|
1342 |
+
|
1343 |
+
Example:
|
1344 |
+
|
1345 |
+
```python
|
1346 |
+
>>> from transformers import AutoTokenizer, XverseForCausalLM
|
1347 |
+
|
1348 |
+
>>> model = XverseForCausalLM.from_pretrained("meta-xverse/xverse-2-7b-hf")
|
1349 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-xverse/xverse-2-7b-hf")
|
1350 |
+
|
1351 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1352 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1353 |
+
|
1354 |
+
>>> # Generate
|
1355 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1356 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1357 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1358 |
+
```"""
|
1359 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1360 |
+
output_router_logits = (
|
1361 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1362 |
+
)
|
1363 |
+
output_hidden_states = (
|
1364 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1365 |
+
)
|
1366 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1367 |
+
|
1368 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1369 |
+
outputs = self.model(
|
1370 |
+
input_ids=input_ids,
|
1371 |
+
attention_mask=attention_mask,
|
1372 |
+
position_ids=position_ids,
|
1373 |
+
past_key_values=past_key_values,
|
1374 |
+
inputs_embeds=inputs_embeds,
|
1375 |
+
use_cache=use_cache,
|
1376 |
+
output_attentions=output_attentions,
|
1377 |
+
output_hidden_states=output_hidden_states,
|
1378 |
+
output_router_logits=output_router_logits,
|
1379 |
+
return_dict=return_dict,
|
1380 |
+
cache_position=cache_position,
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
hidden_states = outputs[0]
|
1384 |
+
if self.config.pretraining_tp > 1:
|
1385 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1386 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1387 |
+
logits = torch.cat(logits, dim=-1)
|
1388 |
+
else:
|
1389 |
+
logits = self.lm_head(hidden_states)
|
1390 |
+
logits = logits.float()
|
1391 |
+
|
1392 |
+
loss = None
|
1393 |
+
if labels is not None:
|
1394 |
+
# Shift so that tokens < n predict n
|
1395 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1396 |
+
shift_labels = labels[..., 1:].contiguous()
|
1397 |
+
# Flatten the tokens
|
1398 |
+
loss_fct = CrossEntropyLoss()
|
1399 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1400 |
+
shift_labels = shift_labels.view(-1)
|
1401 |
+
# Enable model parallelism
|
1402 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1403 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1404 |
+
|
1405 |
+
aux_loss = None
|
1406 |
+
if output_router_logits:
|
1407 |
+
aux_loss = load_balancing_loss_func(
|
1408 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1409 |
+
self.num_experts,
|
1410 |
+
self.moe_top_k,
|
1411 |
+
attention_mask,
|
1412 |
+
)
|
1413 |
+
if labels is not None:
|
1414 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (logits,) + outputs[1:]
|
1418 |
+
if output_router_logits:
|
1419 |
+
output = (aux_loss,) + output
|
1420 |
+
return (loss,) + output if loss is not None else output
|
1421 |
+
|
1422 |
+
return MoeCausalLMOutputWithPast(
|
1423 |
+
loss=loss,
|
1424 |
+
aux_loss=aux_loss,
|
1425 |
+
logits=logits,
|
1426 |
+
past_key_values=outputs.past_key_values,
|
1427 |
+
hidden_states=outputs.hidden_states,
|
1428 |
+
attentions=outputs.attentions,
|
1429 |
+
router_logits=outputs.router_logits,
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
def prepare_inputs_for_generation(
|
1433 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1434 |
+
):
|
1435 |
+
# With static cache, the `past_key_values` is None
|
1436 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1437 |
+
has_static_cache = False
|
1438 |
+
if past_key_values is None:
|
1439 |
+
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1440 |
+
has_static_cache = past_key_values is not None
|
1441 |
+
|
1442 |
+
past_length = 0
|
1443 |
+
if past_key_values is not None:
|
1444 |
+
if isinstance(past_key_values, Cache):
|
1445 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1446 |
+
max_cache_length = (
|
1447 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1448 |
+
if past_key_values.get_max_length() is not None
|
1449 |
+
else None
|
1450 |
+
)
|
1451 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1452 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1453 |
+
else:
|
1454 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1455 |
+
max_cache_length = None
|
1456 |
+
|
1457 |
+
# Keep only the unprocessed tokens:
|
1458 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1459 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1460 |
+
# input)
|
1461 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1462 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1463 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1464 |
+
# input_ids based on the past_length.
|
1465 |
+
elif past_length < input_ids.shape[1]:
|
1466 |
+
input_ids = input_ids[:, past_length:]
|
1467 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1468 |
+
|
1469 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1470 |
+
if (
|
1471 |
+
max_cache_length is not None
|
1472 |
+
and attention_mask is not None
|
1473 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1474 |
+
):
|
1475 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1476 |
+
|
1477 |
+
position_ids = kwargs.get("position_ids", None)
|
1478 |
+
if attention_mask is not None and position_ids is None:
|
1479 |
+
# create position_ids on the fly for batch generation
|
1480 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1481 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1482 |
+
if past_key_values:
|
1483 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1484 |
+
|
1485 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1486 |
+
if inputs_embeds is not None and past_key_values is None:
|
1487 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1488 |
+
else:
|
1489 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1490 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1491 |
+
# TODO: use `next_tokens` directly instead.
|
1492 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1493 |
+
|
1494 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1495 |
+
if cache_position is None:
|
1496 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1497 |
+
else:
|
1498 |
+
cache_position = cache_position[-input_length:]
|
1499 |
+
|
1500 |
+
if has_static_cache:
|
1501 |
+
past_key_values = None
|
1502 |
+
|
1503 |
+
model_inputs.update(
|
1504 |
+
{
|
1505 |
+
"position_ids": position_ids,
|
1506 |
+
"cache_position": cache_position,
|
1507 |
+
"past_key_values": past_key_values,
|
1508 |
+
"use_cache": kwargs.get("use_cache"),
|
1509 |
+
"attention_mask": attention_mask,
|
1510 |
+
}
|
1511 |
+
)
|
1512 |
+
return model_inputs
|
1513 |
+
|
1514 |
+
@staticmethod
|
1515 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1516 |
+
reordered_past = ()
|
1517 |
+
for layer_past in past_key_values:
|
1518 |
+
reordered_past += (
|
1519 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1520 |
+
)
|
1521 |
+
return reordered_past
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"model_max_length": 1000000000000000019884624838656,
|
4 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
5 |
+
}
|