Pyramid_Flow / pyramid_dit_for_video_gen_pipeline.py
xxxpo13's picture
Create pyramid_dit_for_video_gen_pipeline.py
bb749ff verified
import torch
import os
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .modeling_pyramid_mmdit import PyramidDiffusionMMDiT
from .modeling_text_encoder import SD3TextEncoderWithMask
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
class PyramidDiTForVideoGeneration:
def __init__(self, model_path, model_dtype='bf16', use_gradient_checkpointing=False, return_log=True,
model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
if use_mixed_training:
print("using mixed precision training, do not explicitly casting models")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
print("using half precision")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, torch_dtype=torch_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
# The text encoder
if load_text_encoder:
self.text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
self.text_encoder = None
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
# For the image latent
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
# Initialize scaler for mixed precision
self.scaler = torch.cuda.amp.GradScaler()
# ... [other methods remain the same] ...
@torch.cuda.amp.autocast()
def generate(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 7.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False,
):
device = self.device if not cpu_offloading else "cuda"
dtype = self.dtype
if cpu_offloading:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K"
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
if isinstance(video_num_inference_steps, int):
video_num_inference_steps = [video_num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
self.text_encoder.to("cpu")
self.dit.to("cuda")
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# Create the initial random noise
num_channels_latents = self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = 1 + (temp - 1) // self.frame_per_unit
stages = self.stages
generated_latents_list = []
last_generated_latents = None
for unit_index in tqdm(range(num_units)):
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
if unit_index == 0:
past_condition_latents = [[] for _ in range(len(stages))]
with torch.no_grad():
intermed_latents = self.generate_one_unit(
latents[:,:,:1],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
1,
device,
dtype,
generator,
is_first_frame=True,
)
else:
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
with torch.no_grad():
intermed_latents = self.generate_one_unit(
latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
video_num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
torch.cuda.empty_cache()
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
self.dit.to("cpu")
self.vae.to("cuda")
image = self.decode_latent(generated_latents, save_memory=save_memory)
if cpu_offloading:
self.vae.to("cpu")
return image
def decode_latent(self, latents, save_memory=True):
if latents.shape[2] == 1:
latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
else:
latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor
with torch.no_grad(), torch.cuda.amp.autocast():
if save_memory:
image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=128).sample
else:
image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=256).sample
image = image.float()
image = (image / 2 + 0.5).clamp(0, 1)
image = rearrange(image, "B C T H W -> (B T) C H W")
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@property
def device(self):
return next(self.dit.parameters()).device
@property
def dtype(self):
return next(self.dit.parameters()).dtype
@property
def guidance_scale(self):
return self._guidance_scale
@property
def video_guidance_scale(self):
return self._video_guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 0
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)])
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s]
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise
for idx, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
def get_pyramid_latent(self, x, stage_num):
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")