Update utils.py
Browse files
utils.py
CHANGED
@@ -1,96 +1,457 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
|
|
|
|
3 |
import torch.distributed as dist
|
4 |
-
import
|
5 |
-
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def
|
29 |
-
if
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
-
|
37 |
-
rank = 0
|
38 |
-
world_size = 1
|
39 |
-
return rank, world_size
|
40 |
-
|
41 |
-
def main():
|
42 |
-
# Initialize the distributed mode
|
43 |
-
rank, world_size = init_distributed_mode()
|
44 |
-
|
45 |
-
# Set up data transformations
|
46 |
-
transform = transforms.Compose([
|
47 |
-
transforms.ToTensor(),
|
48 |
-
transforms.Normalize((0.5,), (0.5,))
|
49 |
-
])
|
50 |
-
|
51 |
-
# Load dataset
|
52 |
-
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
53 |
-
train_sampler = DistributedSampler(train_dataset)
|
54 |
-
train_loader = DataLoader(train_dataset, batch_size=64, sampler=train_sampler)
|
55 |
-
|
56 |
-
# Initialize model
|
57 |
-
model = SimpleCNN()
|
58 |
-
device = torch.device(f'cuda:{rank % torch.cuda.device_count()}')
|
59 |
-
model.to(device)
|
60 |
-
|
61 |
-
# Wrap the model with DDP
|
62 |
-
if world_size > 1:
|
63 |
-
model = DDP(model, device_ids=[rank], output_device=rank)
|
64 |
-
|
65 |
-
# Set up the optimizer and loss function
|
66 |
-
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
67 |
-
criterion = nn.CrossEntropyLoss()
|
68 |
-
|
69 |
-
# Training loop
|
70 |
-
for epoch in range(10): # Train for 10 epochs
|
71 |
-
train_sampler.set_epoch(epoch) # Shuffle data every epoch
|
72 |
-
running_loss = 0.0
|
73 |
-
|
74 |
-
for inputs, targets in train_loader:
|
75 |
-
inputs, targets = inputs.to(device), targets.to(device)
|
76 |
-
|
77 |
-
# Forward pass
|
78 |
-
outputs = model(inputs)
|
79 |
-
loss = criterion(outputs, targets)
|
80 |
-
|
81 |
-
# Backward pass and optimization
|
82 |
-
optimizer.zero_grad()
|
83 |
-
loss.backward()
|
84 |
-
optimizer.step()
|
85 |
-
|
86 |
-
running_loss += loss.item()
|
87 |
-
|
88 |
-
if rank == 0: # Only print from the main process
|
89 |
-
print(f'Epoch [{epoch + 1}/10], Loss: {running_loss / len(train_loader):.4f}')
|
90 |
-
|
91 |
-
# Clean up distributed training
|
92 |
-
if world_size > 1:
|
93 |
-
dist.destroy_process_group()
|
94 |
-
|
95 |
-
if __name__ == '__main__':
|
96 |
-
main()
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import PIL.Image
|
4 |
+
import numpy as np
|
5 |
+
from torch import nn
|
6 |
import torch.distributed as dist
|
7 |
+
import timm.models.hub as timm_hub
|
8 |
+
|
9 |
+
"""Modified from https://github.com/CompVis/taming-transformers.git"""
|
10 |
+
|
11 |
+
import hashlib
|
12 |
+
import requests
|
13 |
+
from tqdm import tqdm
|
14 |
+
try:
|
15 |
+
import piq
|
16 |
+
except:
|
17 |
+
pass
|
18 |
+
|
19 |
+
_CONTEXT_PARALLEL_GROUP = None
|
20 |
+
_CONTEXT_PARALLEL_SIZE = None
|
21 |
+
|
22 |
+
|
23 |
+
def is_dist_avail_and_initialized():
|
24 |
+
if not dist.is_available():
|
25 |
+
return False
|
26 |
+
if not dist.is_initialized():
|
27 |
+
return False
|
28 |
+
return True
|
29 |
+
|
30 |
+
|
31 |
+
def get_world_size():
|
32 |
+
if not is_dist_avail_and_initialized():
|
33 |
+
return 1
|
34 |
+
return dist.get_world_size()
|
35 |
+
|
36 |
+
|
37 |
+
def get_rank():
|
38 |
+
if not is_dist_avail_and_initialized():
|
39 |
+
return 0
|
40 |
+
return dist.get_rank()
|
41 |
+
|
42 |
+
|
43 |
+
def is_main_process():
|
44 |
+
return get_rank() == 0
|
45 |
+
|
46 |
+
|
47 |
+
def is_context_parallel_initialized():
|
48 |
+
if _CONTEXT_PARALLEL_GROUP is None:
|
49 |
+
return False
|
50 |
+
else:
|
51 |
+
return True
|
52 |
+
|
53 |
+
|
54 |
+
def set_context_parallel_group(size, group):
|
55 |
+
global _CONTEXT_PARALLEL_GROUP
|
56 |
+
global _CONTEXT_PARALLEL_SIZE
|
57 |
+
_CONTEXT_PARALLEL_GROUP = group
|
58 |
+
_CONTEXT_PARALLEL_SIZE = size
|
59 |
+
|
60 |
+
|
61 |
+
def initialize_context_parallel(context_parallel_size):
|
62 |
+
global _CONTEXT_PARALLEL_GROUP
|
63 |
+
global _CONTEXT_PARALLEL_SIZE
|
64 |
+
|
65 |
+
assert _CONTEXT_PARALLEL_GROUP is None, "context parallel group is already initialized"
|
66 |
+
_CONTEXT_PARALLEL_SIZE = context_parallel_size
|
67 |
+
|
68 |
+
rank = torch.distributed.get_rank()
|
69 |
+
world_size = torch.distributed.get_world_size()
|
70 |
+
|
71 |
+
for i in range(0, world_size, context_parallel_size):
|
72 |
+
ranks = range(i, i + context_parallel_size)
|
73 |
+
group = torch.distributed.new_group(ranks)
|
74 |
+
if rank in ranks:
|
75 |
+
_CONTEXT_PARALLEL_GROUP = group
|
76 |
+
break
|
77 |
+
|
78 |
+
|
79 |
+
def get_context_parallel_group():
|
80 |
+
assert _CONTEXT_PARALLEL_GROUP is not None, "context parallel group is not initialized"
|
81 |
+
|
82 |
+
return _CONTEXT_PARALLEL_GROUP
|
83 |
+
|
84 |
+
|
85 |
+
def get_context_parallel_world_size():
|
86 |
+
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
|
87 |
+
|
88 |
+
return _CONTEXT_PARALLEL_SIZE
|
89 |
+
|
90 |
+
|
91 |
+
def get_context_parallel_rank():
|
92 |
+
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
|
93 |
+
|
94 |
+
rank = get_rank()
|
95 |
+
cp_rank = rank % _CONTEXT_PARALLEL_SIZE
|
96 |
+
return cp_rank
|
97 |
+
|
98 |
+
|
99 |
+
def get_context_parallel_group_rank():
|
100 |
+
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
|
101 |
+
|
102 |
+
rank = get_rank()
|
103 |
+
cp_group_rank = rank // _CONTEXT_PARALLEL_SIZE
|
104 |
+
|
105 |
+
return cp_group_rank
|
106 |
+
|
107 |
+
|
108 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
109 |
+
"""
|
110 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
111 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
112 |
+
"""
|
113 |
+
|
114 |
+
def get_cached_file_path():
|
115 |
+
# a hack to sync the file path across processes
|
116 |
+
parts = torch.hub.urlparse(url)
|
117 |
+
filename = os.path.basename(parts.path)
|
118 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
119 |
+
|
120 |
+
return cached_file
|
121 |
+
|
122 |
+
if is_main_process():
|
123 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
124 |
+
|
125 |
+
if is_dist_avail_and_initialized():
|
126 |
+
dist.barrier()
|
127 |
+
|
128 |
+
return get_cached_file_path()
|
129 |
+
|
130 |
+
|
131 |
+
def convert_weights_to_fp16(model: nn.Module):
|
132 |
+
"""Convert applicable model parameters to fp16"""
|
133 |
+
|
134 |
+
def _convert_weights_to_fp16(l):
|
135 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
|
136 |
+
l.weight.data = l.weight.data.to(torch.float16)
|
137 |
+
if l.bias is not None:
|
138 |
+
l.bias.data = l.bias.data.to(torch.float16)
|
139 |
+
|
140 |
+
model.apply(_convert_weights_to_fp16)
|
141 |
+
|
142 |
+
|
143 |
+
def convert_weights_to_bf16(model: nn.Module):
|
144 |
+
"""Convert applicable model parameters to fp16"""
|
145 |
+
|
146 |
+
def _convert_weights_to_bf16(l):
|
147 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
|
148 |
+
l.weight.data = l.weight.data.to(torch.bfloat16)
|
149 |
+
if l.bias is not None:
|
150 |
+
l.bias.data = l.bias.data.to(torch.bfloat16)
|
151 |
+
|
152 |
+
model.apply(_convert_weights_to_bf16)
|
153 |
+
|
154 |
+
|
155 |
+
def save_result(result, result_dir, filename, remove_duplicate="", save_format='json'):
|
156 |
+
import json
|
157 |
+
import jsonlines
|
158 |
+
print("Dump result")
|
159 |
+
|
160 |
+
# Make the temp dir for saving results
|
161 |
+
if not os.path.exists(result_dir):
|
162 |
+
if is_main_process():
|
163 |
+
os.makedirs(result_dir)
|
164 |
+
if is_dist_avail_and_initialized():
|
165 |
+
torch.distributed.barrier()
|
166 |
+
|
167 |
+
result_file = os.path.join(
|
168 |
+
result_dir, "%s_rank%d.json" % (filename, get_rank())
|
169 |
+
)
|
170 |
+
|
171 |
+
final_result_file = os.path.join(result_dir, f"{filename}.{save_format}")
|
172 |
+
|
173 |
+
json.dump(result, open(result_file, "w"))
|
174 |
+
|
175 |
+
if is_dist_avail_and_initialized():
|
176 |
+
torch.distributed.barrier()
|
177 |
+
|
178 |
+
if is_main_process():
|
179 |
+
# print("rank %d starts merging results." % get_rank())
|
180 |
+
# combine results from all processes
|
181 |
+
result = []
|
182 |
+
|
183 |
+
for rank in range(get_world_size()):
|
184 |
+
result_file = os.path.join(result_dir, "%s_rank%d.json" % (filename, rank))
|
185 |
+
res = json.load(open(result_file, "r"))
|
186 |
+
result += res
|
187 |
+
|
188 |
+
# print("Remove duplicate")
|
189 |
+
if remove_duplicate:
|
190 |
+
result_new = []
|
191 |
+
id_set = set()
|
192 |
+
for res in result:
|
193 |
+
if res[remove_duplicate] not in id_set:
|
194 |
+
id_set.add(res[remove_duplicate])
|
195 |
+
result_new.append(res)
|
196 |
+
result = result_new
|
197 |
+
|
198 |
+
if save_format == 'json':
|
199 |
+
json.dump(result, open(final_result_file, "w"))
|
200 |
+
else:
|
201 |
+
assert save_format == 'jsonl', "Only support json adn jsonl format"
|
202 |
+
with jsonlines.open(final_result_file, "w") as writer:
|
203 |
+
writer.write_all(result)
|
204 |
+
|
205 |
+
# print("result file saved to %s" % final_result_file)
|
206 |
+
|
207 |
+
return final_result_file
|
208 |
+
|
209 |
+
|
210 |
+
# resizing utils
|
211 |
+
# TODO: clean up later
|
212 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
213 |
+
h, w = input.shape[-2:]
|
214 |
+
factors = (h / size[0], w / size[1])
|
215 |
+
|
216 |
+
# First, we have to determine sigma
|
217 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
218 |
+
sigmas = (
|
219 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
220 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
221 |
+
)
|
222 |
+
|
223 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
224 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
225 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
226 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
227 |
+
|
228 |
+
# Make sure it is odd
|
229 |
+
if (ks[0] % 2) == 0:
|
230 |
+
ks = ks[0] + 1, ks[1]
|
231 |
+
|
232 |
+
if (ks[1] % 2) == 0:
|
233 |
+
ks = ks[0], ks[1] + 1
|
234 |
+
|
235 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
236 |
+
|
237 |
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
238 |
+
return output
|
239 |
+
|
240 |
+
|
241 |
+
def _compute_padding(kernel_size):
|
242 |
+
"""Compute padding tuple."""
|
243 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
244 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
245 |
+
if len(kernel_size) < 2:
|
246 |
+
raise AssertionError(kernel_size)
|
247 |
+
computed = [k - 1 for k in kernel_size]
|
248 |
+
|
249 |
+
# for even kernels we need to do asymmetric padding :(
|
250 |
+
out_padding = 2 * len(kernel_size) * [0]
|
251 |
+
|
252 |
+
for i in range(len(kernel_size)):
|
253 |
+
computed_tmp = computed[-(i + 1)]
|
254 |
+
|
255 |
+
pad_front = computed_tmp // 2
|
256 |
+
pad_rear = computed_tmp - pad_front
|
257 |
+
|
258 |
+
out_padding[2 * i + 0] = pad_front
|
259 |
+
out_padding[2 * i + 1] = pad_rear
|
260 |
+
|
261 |
+
return out_padding
|
262 |
+
|
263 |
+
|
264 |
+
def _filter2d(input, kernel):
|
265 |
+
# prepare kernel
|
266 |
+
b, c, h, w = input.shape
|
267 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
268 |
+
|
269 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
270 |
+
|
271 |
+
height, width = tmp_kernel.shape[-2:]
|
272 |
+
|
273 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
274 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
275 |
+
|
276 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
277 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
278 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
279 |
+
|
280 |
+
# convolve the tensor with the kernel.
|
281 |
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
282 |
+
|
283 |
+
out = output.view(b, c, h, w)
|
284 |
+
return out
|
285 |
+
|
286 |
+
|
287 |
+
def _gaussian(window_size: int, sigma):
|
288 |
+
if isinstance(sigma, float):
|
289 |
+
sigma = torch.tensor([[sigma]])
|
290 |
+
|
291 |
+
batch_size = sigma.shape[0]
|
292 |
+
|
293 |
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
294 |
+
|
295 |
+
if window_size % 2 == 0:
|
296 |
+
x = x + 0.5
|
297 |
+
|
298 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
299 |
+
|
300 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
301 |
+
|
302 |
+
|
303 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
304 |
+
if isinstance(sigma, tuple):
|
305 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
306 |
+
else:
|
307 |
+
sigma = sigma.to(dtype=input.dtype)
|
308 |
+
|
309 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
310 |
+
bs = sigma.shape[0]
|
311 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
312 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
313 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
314 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
315 |
+
|
316 |
+
return out
|
317 |
+
|
318 |
+
|
319 |
+
URL_MAP = {
|
320 |
+
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"
|
321 |
+
}
|
322 |
+
|
323 |
+
CKPT_MAP = {
|
324 |
+
"vgg_lpips": "vgg.pth"
|
325 |
+
}
|
326 |
+
|
327 |
+
MD5_MAP = {
|
328 |
+
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"
|
329 |
+
}
|
330 |
+
|
331 |
+
|
332 |
+
def download(url, local_path, chunk_size=1024):
|
333 |
+
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
334 |
+
with requests.get(url, stream=True) as r:
|
335 |
+
total_size = int(r.headers.get("content-length", 0))
|
336 |
+
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
337 |
+
with open(local_path, "wb") as f:
|
338 |
+
for data in r.iter_content(chunk_size=chunk_size):
|
339 |
+
if data:
|
340 |
+
f.write(data)
|
341 |
+
pbar.update(chunk_size)
|
342 |
+
|
343 |
+
|
344 |
+
def md5_hash(path):
|
345 |
+
with open(path, "rb") as f:
|
346 |
+
content = f.read()
|
347 |
+
return hashlib.md5(content).hexdigest()
|
348 |
+
|
349 |
+
|
350 |
+
def get_ckpt_path(name, root, check=False):
|
351 |
+
assert name in URL_MAP
|
352 |
+
path = os.path.join(root, CKPT_MAP[name])
|
353 |
+
print(md5_hash(path))
|
354 |
+
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
355 |
+
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
|
356 |
+
download(URL_MAP[name], path)
|
357 |
+
md5 = md5_hash(path)
|
358 |
+
assert md5 == MD5_MAP[name], md5
|
359 |
+
return path
|
360 |
+
|
361 |
+
|
362 |
+
class KeyNotFoundError(Exception):
|
363 |
+
def __init__(self, cause, keys=None, visited=None):
|
364 |
+
self.cause = cause
|
365 |
+
self.keys = keys
|
366 |
+
self.visited = visited
|
367 |
+
messages = list()
|
368 |
+
if keys is not None:
|
369 |
+
messages.append("Key not found: {}".format(keys))
|
370 |
+
if visited is not None:
|
371 |
+
messages.append("Visited: {}".format(visited))
|
372 |
+
messages.append("Cause:\n{}".format(cause))
|
373 |
+
message = "\n".join(messages)
|
374 |
+
super().__init__(message)
|
375 |
+
|
376 |
+
|
377 |
+
def retrieve(
|
378 |
+
list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False
|
379 |
+
):
|
380 |
+
"""Given a nested list or dict return the desired value at key expanding
|
381 |
+
callable nodes if necessary and :attr:`expand` is ``True``. The expansion
|
382 |
+
is done in-place.
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
----------
|
386 |
+
list_or_dict : list or dict
|
387 |
+
Possibly nested list or dictionary.
|
388 |
+
key : str
|
389 |
+
key/to/value, path like string describing all keys necessary to
|
390 |
+
consider to get to the desired value. List indices can also be
|
391 |
+
passed here.
|
392 |
+
splitval : str
|
393 |
+
String that defines the delimiter between keys of the
|
394 |
+
different depth levels in `key`.
|
395 |
+
default : obj
|
396 |
+
Value returned if :attr:`key` is not found.
|
397 |
+
expand : bool
|
398 |
+
Whether to expand callable nodes on the path or not.
|
399 |
+
|
400 |
+
Returns
|
401 |
+
-------
|
402 |
+
The desired value or if :attr:`default` is not ``None`` and the
|
403 |
+
:attr:`key` is not found returns ``default``.
|
404 |
+
|
405 |
+
Raises
|
406 |
+
------
|
407 |
+
Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is
|
408 |
+
``None``.
|
409 |
+
"""
|
410 |
+
|
411 |
+
keys = key.split(splitval)
|
412 |
+
|
413 |
+
success = True
|
414 |
+
try:
|
415 |
+
visited = []
|
416 |
+
parent = None
|
417 |
+
last_key = None
|
418 |
+
for key in keys:
|
419 |
+
if callable(list_or_dict):
|
420 |
+
if not expand:
|
421 |
+
raise KeyNotFoundError(
|
422 |
+
ValueError(
|
423 |
+
"Trying to get past callable node with expand=False."
|
424 |
+
),
|
425 |
+
keys=keys,
|
426 |
+
visited=visited,
|
427 |
+
)
|
428 |
+
list_or_dict = list_or_dict()
|
429 |
+
parent[last_key] = list_or_dict
|
430 |
+
|
431 |
+
last_key = key
|
432 |
+
parent = list_or_dict
|
433 |
+
|
434 |
+
try:
|
435 |
+
if isinstance(list_or_dict, dict):
|
436 |
+
list_or_dict = list_or_dict[key]
|
437 |
+
else:
|
438 |
+
list_or_dict = list_or_dict[int(key)]
|
439 |
+
except (KeyError, IndexError, ValueError) as e:
|
440 |
+
raise KeyNotFoundError(e, keys=keys, visited=visited)
|
441 |
+
|
442 |
+
visited += [key]
|
443 |
+
# final expansion of retrieved value
|
444 |
+
if expand and callable(list_or_dict):
|
445 |
+
list_or_dict = list_or_dict()
|
446 |
+
parent[last_key] = list_or_dict
|
447 |
+
except KeyNotFoundError as e:
|
448 |
+
if default is None:
|
449 |
+
raise e
|
450 |
+
else:
|
451 |
+
list_or_dict = default
|
452 |
+
success = False
|
453 |
+
|
454 |
+
if not pass_success:
|
455 |
+
return list_or_dict
|
456 |
else:
|
457 |
+
return list_or_dict, success
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|