Upload scheduling_flow_matching.py
Browse files- scheduling_flow_matching.py +298 -0
scheduling_flow_matching.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union, List
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.utils import BaseOutput, logging
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
11 |
+
from IPython import embed
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
16 |
+
"""
|
17 |
+
Output class for the scheduler's `step` function output.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
21 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
22 |
+
denoising loop.
|
23 |
+
"""
|
24 |
+
|
25 |
+
prev_sample: torch.FloatTensor
|
26 |
+
|
27 |
+
|
28 |
+
class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
29 |
+
"""
|
30 |
+
Euler scheduler.
|
31 |
+
|
32 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
33 |
+
methods the library implements for all schedulers such as loading and saving.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
num_train_timesteps (`int`, defaults to 1000):
|
37 |
+
The number of diffusion steps to train the model.
|
38 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
39 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
40 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
41 |
+
shift (`float`, defaults to 1.0):
|
42 |
+
The shift value for the timestep schedule.
|
43 |
+
"""
|
44 |
+
|
45 |
+
_compatibles = []
|
46 |
+
order = 1
|
47 |
+
|
48 |
+
@register_to_config
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
num_train_timesteps: int = 1000,
|
52 |
+
shift: float = 1.0, # Following Stable diffusion 3,
|
53 |
+
stages: int = 3,
|
54 |
+
stage_range: List = [0, 1/3, 2/3, 1],
|
55 |
+
gamma: float = 1/3,
|
56 |
+
):
|
57 |
+
|
58 |
+
self.timestep_ratios = {} # The timestep ratio for each stage
|
59 |
+
self.timesteps_per_stage = {} # The detailed timesteps per stage
|
60 |
+
self.sigmas_per_stage = {}
|
61 |
+
self.start_sigmas = {}
|
62 |
+
self.end_sigmas = {}
|
63 |
+
self.ori_start_sigmas = {}
|
64 |
+
|
65 |
+
# self.init_sigmas()
|
66 |
+
self.init_sigmas_for_each_stage()
|
67 |
+
self.sigma_min = self.sigmas[-1].item()
|
68 |
+
self.sigma_max = self.sigmas[0].item()
|
69 |
+
self.gamma = gamma
|
70 |
+
|
71 |
+
def init_sigmas(self):
|
72 |
+
"""
|
73 |
+
initialize the global timesteps and sigmas
|
74 |
+
"""
|
75 |
+
num_train_timesteps = self.config.num_train_timesteps
|
76 |
+
shift = self.config.shift
|
77 |
+
|
78 |
+
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
79 |
+
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
80 |
+
|
81 |
+
sigmas = timesteps / num_train_timesteps
|
82 |
+
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
83 |
+
|
84 |
+
self.timesteps = sigmas * num_train_timesteps
|
85 |
+
|
86 |
+
self._step_index = None
|
87 |
+
self._begin_index = None
|
88 |
+
|
89 |
+
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
90 |
+
|
91 |
+
def init_sigmas_for_each_stage(self):
|
92 |
+
"""
|
93 |
+
Init the timesteps for each stage
|
94 |
+
"""
|
95 |
+
self.init_sigmas()
|
96 |
+
|
97 |
+
stage_distance = []
|
98 |
+
stages = self.config.stages
|
99 |
+
training_steps = self.config.num_train_timesteps
|
100 |
+
stage_range = self.config.stage_range
|
101 |
+
|
102 |
+
# Init the start and end point of each stage
|
103 |
+
for i_s in range(stages):
|
104 |
+
# To decide the start and ends point
|
105 |
+
start_indice = int(stage_range[i_s] * training_steps)
|
106 |
+
start_indice = max(start_indice, 0)
|
107 |
+
end_indice = int(stage_range[i_s+1] * training_steps)
|
108 |
+
end_indice = min(end_indice, training_steps)
|
109 |
+
start_sigma = self.sigmas[start_indice].item()
|
110 |
+
end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0
|
111 |
+
self.ori_start_sigmas[i_s] = start_sigma
|
112 |
+
|
113 |
+
if i_s != 0:
|
114 |
+
ori_sigma = 1 - start_sigma
|
115 |
+
gamma = self.config.gamma
|
116 |
+
corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma
|
117 |
+
# corrected_sigma = 1 / (2 - ori_sigma) * ori_sigma
|
118 |
+
start_sigma = 1 - corrected_sigma
|
119 |
+
|
120 |
+
stage_distance.append(start_sigma - end_sigma)
|
121 |
+
self.start_sigmas[i_s] = start_sigma
|
122 |
+
self.end_sigmas[i_s] = end_sigma
|
123 |
+
|
124 |
+
# Determine the ratio of each stage according to flow length
|
125 |
+
tot_distance = sum(stage_distance)
|
126 |
+
for i_s in range(stages):
|
127 |
+
if i_s == 0:
|
128 |
+
start_ratio = 0.0
|
129 |
+
else:
|
130 |
+
start_ratio = sum(stage_distance[:i_s]) / tot_distance
|
131 |
+
if i_s == stages - 1:
|
132 |
+
end_ratio = 1.0
|
133 |
+
else:
|
134 |
+
end_ratio = sum(stage_distance[:i_s+1]) / tot_distance
|
135 |
+
|
136 |
+
self.timestep_ratios[i_s] = (start_ratio, end_ratio)
|
137 |
+
|
138 |
+
# Determine the timesteps and sigmas for each stage
|
139 |
+
for i_s in range(stages):
|
140 |
+
timestep_ratio = self.timestep_ratios[i_s]
|
141 |
+
timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)]
|
142 |
+
timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)]
|
143 |
+
timesteps = np.linspace(
|
144 |
+
timestep_max, timestep_min, training_steps + 1,
|
145 |
+
)
|
146 |
+
self.timesteps_per_stage[i_s] = timesteps[:-1]
|
147 |
+
stage_sigmas = np.linspace(
|
148 |
+
1, 0, training_steps + 1,
|
149 |
+
)
|
150 |
+
self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1])
|
151 |
+
|
152 |
+
@property
|
153 |
+
def step_index(self):
|
154 |
+
"""
|
155 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
156 |
+
"""
|
157 |
+
return self._step_index
|
158 |
+
|
159 |
+
@property
|
160 |
+
def begin_index(self):
|
161 |
+
"""
|
162 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
163 |
+
"""
|
164 |
+
return self._begin_index
|
165 |
+
|
166 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
167 |
+
def set_begin_index(self, begin_index: int = 0):
|
168 |
+
"""
|
169 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
begin_index (`int`):
|
173 |
+
The begin index for the scheduler.
|
174 |
+
"""
|
175 |
+
self._begin_index = begin_index
|
176 |
+
|
177 |
+
def _sigma_to_t(self, sigma):
|
178 |
+
return sigma * self.config.num_train_timesteps
|
179 |
+
|
180 |
+
def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None):
|
181 |
+
"""
|
182 |
+
Setting the timesteps and sigmas for each stage
|
183 |
+
"""
|
184 |
+
self.num_inference_steps = num_inference_steps
|
185 |
+
training_steps = self.config.num_train_timesteps
|
186 |
+
self.init_sigmas()
|
187 |
+
|
188 |
+
stage_timesteps = self.timesteps_per_stage[stage_index]
|
189 |
+
timestep_max = stage_timesteps[0].item()
|
190 |
+
timestep_min = stage_timesteps[-1].item()
|
191 |
+
|
192 |
+
timesteps = np.linspace(
|
193 |
+
timestep_max, timestep_min, num_inference_steps,
|
194 |
+
)
|
195 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
196 |
+
|
197 |
+
stage_sigmas = self.sigmas_per_stage[stage_index]
|
198 |
+
sigma_max = stage_sigmas[0].item()
|
199 |
+
sigma_min = stage_sigmas[-1].item()
|
200 |
+
|
201 |
+
ratios = np.linspace(
|
202 |
+
sigma_max, sigma_min, num_inference_steps
|
203 |
+
)
|
204 |
+
sigmas = torch.from_numpy(ratios).to(device=device)
|
205 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
206 |
+
|
207 |
+
self._step_index = None
|
208 |
+
|
209 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
210 |
+
if schedule_timesteps is None:
|
211 |
+
schedule_timesteps = self.timesteps
|
212 |
+
|
213 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
214 |
+
|
215 |
+
# The sigma index that is taken for the **very** first `step`
|
216 |
+
# is always the second index (or the last index if there is only 1)
|
217 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
218 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
219 |
+
pos = 1 if len(indices) > 1 else 0
|
220 |
+
|
221 |
+
return indices[pos].item()
|
222 |
+
|
223 |
+
def _init_step_index(self, timestep):
|
224 |
+
if self.begin_index is None:
|
225 |
+
if isinstance(timestep, torch.Tensor):
|
226 |
+
timestep = timestep.to(self.timesteps.device)
|
227 |
+
self._step_index = self.index_for_timestep(timestep)
|
228 |
+
else:
|
229 |
+
self._step_index = self._begin_index
|
230 |
+
|
231 |
+
def step(
|
232 |
+
self,
|
233 |
+
model_output: torch.FloatTensor,
|
234 |
+
timestep: Union[float, torch.FloatTensor],
|
235 |
+
sample: torch.FloatTensor,
|
236 |
+
generator: Optional[torch.Generator] = None,
|
237 |
+
return_dict: bool = True,
|
238 |
+
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
239 |
+
"""
|
240 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
241 |
+
process from the learned model outputs (most often the predicted noise).
|
242 |
+
|
243 |
+
Args:
|
244 |
+
model_output (`torch.FloatTensor`):
|
245 |
+
The direct output from learned diffusion model.
|
246 |
+
timestep (`float`):
|
247 |
+
The current discrete timestep in the diffusion chain.
|
248 |
+
sample (`torch.FloatTensor`):
|
249 |
+
A current instance of a sample created by the diffusion process.
|
250 |
+
generator (`torch.Generator`, *optional*):
|
251 |
+
A random number generator.
|
252 |
+
return_dict (`bool`):
|
253 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
254 |
+
tuple.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
258 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
259 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
260 |
+
"""
|
261 |
+
|
262 |
+
if (
|
263 |
+
isinstance(timestep, int)
|
264 |
+
or isinstance(timestep, torch.IntTensor)
|
265 |
+
or isinstance(timestep, torch.LongTensor)
|
266 |
+
):
|
267 |
+
raise ValueError(
|
268 |
+
(
|
269 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
270 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
271 |
+
" one of the `scheduler.timesteps` as a timestep."
|
272 |
+
),
|
273 |
+
)
|
274 |
+
|
275 |
+
if self.step_index is None:
|
276 |
+
self._step_index = 0
|
277 |
+
|
278 |
+
# Upcast to avoid precision issues when computing prev_sample
|
279 |
+
sample = sample.to(torch.float32)
|
280 |
+
|
281 |
+
sigma = self.sigmas[self.step_index]
|
282 |
+
sigma_next = self.sigmas[self.step_index + 1]
|
283 |
+
|
284 |
+
prev_sample = sample + (sigma_next - sigma) * model_output
|
285 |
+
|
286 |
+
# Cast sample back to model compatible dtype
|
287 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
288 |
+
|
289 |
+
# upon completion increase step index by one
|
290 |
+
self._step_index += 1
|
291 |
+
|
292 |
+
if not return_dict:
|
293 |
+
return (prev_sample,)
|
294 |
+
|
295 |
+
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
|
296 |
+
|
297 |
+
def __len__(self):
|
298 |
+
return self.config.num_train_timesteps
|