File size: 26,261 Bytes
1c3660c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""Caduceus model for Hugging Face.

"""

import math
from functools import partial
from typing import Optional, Tuple, Union

import torch
from mamba_ssm.modules.mamba_simple import Mamba, Block
from torch import nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithNoAttention, MaskedLMOutput, SequenceClassifierOutput

try:
    from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
    RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None

from .configuration_caduceus import CaduceusConfig
from .modeling_rcps import RCPSAddNormWrapper, RCPSEmbedding, RCPSLMHead, RCPSMambaBlock


def create_block(
        d_model,
        ssm_cfg=None,
        norm_epsilon=1e-5,
        rms_norm=False,
        residual_in_fp32=False,
        fused_add_norm=False,
        layer_idx=None,
        bidirectional=True,
        bidirectional_strategy="add",
        bidirectional_weight_tie=True,
        rcps=False,
        device=None,
        dtype=None,
):
    """Create Caduceus block.

    Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
    """
    if ssm_cfg is None:
        ssm_cfg = {}
    factory_kwargs = {"device": device, "dtype": dtype}
    bidirectional_kwargs = {
        "bidirectional": bidirectional,
        "bidirectional_strategy": bidirectional_strategy,
        "bidirectional_weight_tie": bidirectional_weight_tie,
    }
    mixer_cls = partial(BiMambaWrapper, layer_idx=layer_idx, **ssm_cfg, **bidirectional_kwargs, **factory_kwargs)
    norm_cls = partial(
        nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
    )
    block_cls = RCPSMambaBlock if rcps else Block
    block = block_cls(
        d_model,
        mixer_cls,
        norm_cls=norm_cls,
        fused_add_norm=fused_add_norm,
        residual_in_fp32=residual_in_fp32,
    )
    block.layer_idx = layer_idx
    return block


class BiMambaWrapper(nn.Module):
    """Thin wrapper around Mamba to support bi-directionality."""

    def __init__(
            self,
            d_model: int,
            bidirectional: bool = True,
            bidirectional_strategy: Optional[str] = "add",
            bidirectional_weight_tie: bool = True,
            **mamba_kwargs,
    ):
        super().__init__()
        if bidirectional and bidirectional_strategy is None:
            bidirectional_strategy = "add"  # Default strategy: `add`
        if bidirectional and bidirectional_strategy not in ["add", "ew_multiply"]:
            raise NotImplementedError(f"`{bidirectional_strategy}` strategy for bi-directionality is not implemented!")
        self.bidirectional = bidirectional
        self.bidirectional_strategy = bidirectional_strategy
        self.mamba_fwd = Mamba(
            d_model=d_model,
            **mamba_kwargs
        )
        if bidirectional:
            self.mamba_rev = Mamba(
                d_model=d_model,
                **mamba_kwargs
            )
            if bidirectional_weight_tie:  # Tie in and out projections (where most of param count lies)
                self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
                self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
                self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
                self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
        else:
            self.mamba_rev = None

    def forward(self, hidden_states, inference_params=None):
        """Bidirectional-enabled forward pass

        hidden_states: (B, L, D)
        Returns: same shape as hidden_states
        """
        out = self.mamba_fwd(hidden_states, inference_params=inference_params)
        if self.bidirectional:
            out_rev = self.mamba_rev(
                hidden_states.flip(dims=(1,)),  # Flip along the sequence length dimension
                inference_params=inference_params
            ).flip(dims=(1,))  # Flip back for combining with forward hidden states
            if self.bidirectional_strategy == "add":
                out = out + out_rev
            elif self.bidirectional_strategy == "ew_multiply":
                out = out * out_rev
            else:
                raise NotImplementedError(f"`{self.bidirectional_strategy}` for bi-directionality not implemented!")
        return out


class CaduceusEmbeddings(nn.Module):
    def __init__(
            self,
            config: CaduceusConfig,
            device=None,
            dtype=None,
    ):
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}
        if config.rcps:
            self.word_embeddings = RCPSEmbedding(
                config.vocab_size, config.d_model, config.complement_map, **factory_kwargs
            )
        else:
            self.word_embeddings = nn.Embedding(config.vocab_size, config.d_model, **factory_kwargs)

    def forward(self, input_ids):
        """
            input_ids: (batch, seqlen)
        """
        return self.word_embeddings(input_ids)


class CaduceusMixerModel(nn.Module):
    def __init__(
            self,
            config: CaduceusConfig,
            device=None,
            dtype=None,
    ) -> None:
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}

        self.fused_add_norm = config.fused_add_norm
        self.rcps = config.rcps
        self.residual_in_fp32 = config.residual_in_fp32

        self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)

        # Mamba changes the order of residual and layer norm:
        # Instead of LN -> Attn / MLP -> Add, we do:
        # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
        # the main branch (output of MLP / Mixer). The model definition is unchanged.
        # This is for performance reason: we can fuse add + layer_norm.
        if config.fused_add_norm:
            if layer_norm_fn is None or rms_norm_fn is None:
                raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")

        self.layers = nn.ModuleList(
            [
                create_block(
                    config.d_model,
                    ssm_cfg=config.ssm_cfg,
                    norm_epsilon=config.norm_epsilon,
                    rms_norm=config.rms_norm,
                    residual_in_fp32=config.residual_in_fp32,
                    fused_add_norm=config.fused_add_norm,
                    layer_idx=i,
                    bidirectional=config.bidirectional,
                    bidirectional_strategy=config.bidirectional_strategy,
                    bidirectional_weight_tie=config.bidirectional_weight_tie,
                    rcps=config.rcps,
                    **factory_kwargs,
                )
                for i in range(config.n_layer)
            ]
        )

        norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
            config.d_model, eps=config.norm_epsilon, **factory_kwargs
        )
        self.norm_f = norm_f if (config.fused_add_norm or not config.rcps) else RCPSAddNormWrapper(norm_f)

    def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
        """Mixer forward."""
        all_hidden_states = []
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.embeddings(input_ids)

        residual = None
        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states.append(hidden_states)
            # TODO: Add support for gradient checkpointing
            hidden_states, residual = layer(
                hidden_states, residual, inference_params=None
            )

        if not self.fused_add_norm:
            if self.rcps:
                # Set prenorm=False here since we don't need the residual
                hidden_states = self.norm_f(hidden_states, residual=residual, prenorm=False)
            else:
                residual = (hidden_states + residual) if residual is not None else hidden_states
                hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
        else:
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
            if self.rcps:
                # Set prenorm=False here since we don't need the residual
                hidden_states_fwd = fused_add_norm_fn(
                    hidden_states[..., :hidden_states.shape[-1] // 2],
                    self.norm_f.weight,
                    self.norm_f.bias,
                    eps=self.norm_f.eps,
                    residual=residual[..., :hidden_states.shape[-1] // 2],
                    prenorm=False,
                    residual_in_fp32=self.residual_in_fp32,
                )
                hidden_states_rc = fused_add_norm_fn(
                    hidden_states[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
                    self.norm_f.weight,
                    self.norm_f.bias,
                    eps=self.norm_f.eps,
                    residual=residual[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
                    prenorm=False,
                    residual_in_fp32=self.residual_in_fp32,
                )
                hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
            else:
                # Set prenorm=False here since we don't need the residual
                hidden_states = fused_add_norm_fn(
                    hidden_states,
                    self.norm_f.weight,
                    self.norm_f.bias,
                    eps=self.norm_f.eps,
                    residual=residual,
                    prenorm=False,
                    residual_in_fp32=self.residual_in_fp32,
                )
            if output_hidden_states:
                all_hidden_states.append(hidden_states)
        return hidden_states, all_hidden_states


def cross_entropy(logits, y, ignore_index=-100):
    """Cross entropy loss."""
    logits = logits.view(-1, logits.shape[-1])
    y = y.view(-1)
    return F.cross_entropy(logits, y, ignore_index=ignore_index)


def weighted_cross_entropy(logits, y, loss_weights, ignore_index=-100):
    """Weighted cross entropy loss (discounts certain tokens, e.g., repeated base pairs in genome)."""
    logits = logits.view(-1, logits.shape[-1])
    y = y.view(-1)
    ce = F.cross_entropy(logits, y, ignore_index=ignore_index, reduction="none")
    loss_weights = loss_weights.view(-1)
    loss_weights[y == ignore_index] = 0.0
    # TODO: Follows GPN implementation, but should we remove weight normalization?
    return (ce * (loss_weights / loss_weights.sum())).sum()


class CaduceusPreTrainedModel(PreTrainedModel):
    """PreTrainedModel wrapper for Caduceus backbone."""
    config_class = CaduceusConfig
    base_model_prefix = "caduceus"
    supports_gradient_checkpointing = False
    _no_split_modules = ["BiMambaWrapper"]

    def _init_weights(
            self,
            module,
            initializer_range=0.02,  # Now only used for embedding layer.
            **kwargs,
    ):
        """Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""

        n_layer = self.config.n_layer
        initialized_cfg = self.config.initializer_cfg if self.config.initializer_cfg is not None else {}
        rescale_prenorm_residual = initialized_cfg.get("rescale_prenorm_residual", True)
        initializer_range = initialized_cfg.get("initializer_range", initializer_range)
        n_residuals_per_layer = initialized_cfg.get("n_residuals_per_layer", 1)

        if isinstance(module, nn.Linear):
            if module.bias is not None:
                if not getattr(module.bias, "_no_reinit", False):
                    nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, std=initializer_range)

        if rescale_prenorm_residual:
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth.
            #   > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
            #   residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            for name, p in module.named_parameters():
                if name in ["out_proj.weight", "fc2.weight"]:
                    # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                    # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                    # We need to reinit p since this code could be called multiple times
                    # Having just p *= scale would repeatedly scale it down
                    nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                    with torch.no_grad():
                        p /= math.sqrt(n_residuals_per_layer * n_layer)


class Caduceus(CaduceusPreTrainedModel):
    """Caduceus model that can be instantiated using HF patterns."""
    def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
        super().__init__(config)

        if config.rcps:
            assert config.complement_map is not None, "Complement map must be provided for RCPS."

        # Adjust vocab size and complement maps if vocab padding is set.
        if config.vocab_size % config.pad_vocab_size_multiple != 0:
            config.vocab_size += config.pad_vocab_size_multiple - (config.vocab_size % config.pad_vocab_size_multiple)
        if config.complement_map is not None and config.vocab_size > len(config.complement_map):
            for i in range(len(config.complement_map), config.vocab_size):
                config.complement_map[i] = i

        self.config = config
        factory_kwargs = {"device": device, "dtype": dtype}
        self.backbone = CaduceusMixerModel(config, **factory_kwargs, **kwargs)

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
        """HF-compatible forward method."""
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states, all_hidden_states = self.backbone(
            input_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states
        )
        if return_dict:
            return BaseModelOutputWithNoAttention(
                last_hidden_state=hidden_states,
                hidden_states=all_hidden_states if output_hidden_states else None
            )
        elif output_hidden_states:
            return hidden_states, all_hidden_states
        else:
            return hidden_states


class CaduceusForMaskedLM(CaduceusPreTrainedModel):
    """HF-compatible Caduceus model for masked language modeling."""

    def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
        super().__init__(config, **kwargs)
        factory_kwargs = {"device": device, "dtype": dtype}
        self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
        if config.rcps:
            self.lm_head = RCPSLMHead(
                complement_map=self.config.complement_map,  # Use caduceus config as it might have been updated
                vocab_size=self.config.vocab_size,  # Use caduceus config as it might have been updated
                true_dim=config.d_model,
                dtype=dtype
            )
        else:
            self.lm_head = nn.Linear(
                config.d_model,
                self.config.vocab_size,  # Use caduceus config as it might have been updated
                bias=False,
                **factory_kwargs
            )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.caduceus.backbone.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        if self.config.rcps:
            raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
        self.caduceus.backbone.embeddings.word_embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        """Overrides output embeddings."""
        if self.config.rcps:
            raise NotImplementedError("Setting output embeddings for RCPS LM is not supported.")
        self.lm_head = new_embeddings

    def tie_weights(self):
        """Tie weights, accounting for RCPS."""
        if self.config.rcps:
            self.lm_head.set_weight(self.get_input_embeddings().weight)
        else:
            super().tie_weights()

    def get_decoder(self):
        """Get decoder (backbone) for the model."""
        return self.caduceus

    def set_decoder(self, decoder):
        """Set decoder (backbone) for the model."""
        self.caduceus = decoder

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        loss_weights: Optional[torch.FloatTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        """HF-compatible forward method."""

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.caduceus(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            if loss_weights is not None:
                loss = weighted_cross_entropy(logits, labels, loss_weights, ignore_index=self.config.pad_token_id)
            else:
                loss = cross_entropy(logits, labels, ignore_index=self.config.pad_token_id)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MaskedLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )


class CaduceusForSequenceClassification(CaduceusPreTrainedModel):
    def __init__(
            self,
            config: CaduceusConfig,
            pooling_strategy: str = "mean",
            conjoin_train: bool = False,
            conjoin_eval: bool = False,
            device=None,
            dtype=None,
            **kwargs):
        super().__init__(config, **kwargs)
        if pooling_strategy not in ["mean", "max", "first", "last"]:
            raise NotImplementedError(f"Pooling strategy `{pooling_strategy}` not implemented.")
        self.pooling_strategy = pooling_strategy
        factory_kwargs = {"device": device, "dtype": dtype}
        self.num_labels = kwargs.get("num_labels", config.num_labels)
        self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
        self.score = nn.Linear(config.d_model, self.num_labels, bias=False)

        self.conjoin_train = conjoin_train
        self.conjoin_eval = conjoin_eval

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.caduceus.backbone.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        if self.config.rcps:
            raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
        self.caduceus.backbone.embeddings.word_embeddings = value

    def pool_hidden_states(self, hidden_states, sequence_length_dim=1):
        """Pools hidden states along sequence length dimension."""
        if self.pooling_strategy == "mean":  # Mean pooling along sequence length dimension
            return hidden_states.mean(dim=sequence_length_dim)
        if self.pooling_strategy == "max":  # Max pooling along sequence length dimension
            return hidden_states.max(dim=sequence_length_dim).values
        if self.pooling_strategy == "last":  # Use embedding of last token in the sequence
            return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[-1, ...]
        if self.pooling_strategy == "first":  # Use embedding of first token in the sequence
            return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[0, ...]

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Get hidden representations from the backbone
        if self.config.rcps:  # Hidden states have 2 * d_model channels for RCPS
            transformer_outputs = self.caduceus(
                input_ids,
                inputs_embeds=inputs_embeds,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            hidden_states = torch.stack(
                [
                    transformer_outputs[0][..., :self.config.d_model],
                    torch.flip(transformer_outputs[0][..., self.config.d_model:], dims=[1, 2])
                 ],
                dim=-1
            )
        elif self.conjoin_train or (self.conjoin_eval and not self.training):  # For conjoining / post-hoc conjoining
            assert input_ids is not None, "`input_ids` must be provided for conjoining."
            assert input_ids.ndim == 3, "`input_ids` must be 3D tensor: channels corresponds to forward and rc strands."
            transformer_outputs = self.caduceus(
                input_ids[..., 0],
                inputs_embeds=None,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            transformer_outputs_rc = self.caduceus(
                input_ids[..., 1],
                inputs_embeds=None,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            # Stack along channel dimension (dim=-1)
            hidden_states = torch.stack([transformer_outputs[0], transformer_outputs_rc[0]], dim=-1)
        else:
            transformer_outputs = self.caduceus(
                input_ids,
                inputs_embeds=None,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            hidden_states = transformer_outputs[0]

        # Pool and get logits
        pooled_hidden_states = self.pool_hidden_states(hidden_states)
        # Potentially run `score` twice (with parameters shared) for conjoining
        if hidden_states.ndim == 4:  # bsz, seq_len, hidden_dim, 2 where last channel has the stacked fwd and rc reps
            logits_fwd = self.score(pooled_hidden_states[..., 0])
            logits_rc = self.score(pooled_hidden_states[..., 1])
            logits = (logits_fwd + logits_rc) / 2
        else:
            logits = self.score(pooled_hidden_states)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = F.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = F.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = F.binary_cross_entropy_with_logits(logits, labels)
        if not return_dict:
            output = (logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
        )