yairschiff
commited on
Upload tokenizer
Browse files- README.md +199 -0
- special_tokens_map.json +7 -0
- tokenizer.py +264 -0
- tokenizer_config.json +58 -0
- vocab.json +37 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "<bos>",
|
3 |
+
"mask_token": "<mask>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"sep_token": "<eos>",
|
6 |
+
"unk_token": "<unk>"
|
7 |
+
}
|
tokenizer.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Custom Tokenization classes."""
|
2 |
+
|
3 |
+
import collections
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {
|
18 |
+
"yairschiff/qm9-tokenizer": "https://huggingface.co/yairschiff/qm9-tokenizer/resolve/main/vocab.json",
|
19 |
+
}
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class QM9Tokenizer(PreTrainedTokenizer):
|
24 |
+
r"""
|
25 |
+
Construct a tokenizer for QM9 dataset. Based on regex.
|
26 |
+
|
27 |
+
This tokenizer inherits from [`PreTrainedTokenizer`]
|
28 |
+
which contains most of the main methods. Users should
|
29 |
+
refer to this superclass for more information regarding
|
30 |
+
those methods.
|
31 |
+
|
32 |
+
Adapted from:
|
33 |
+
https://huggingface.co/ibm/MoLFormer-XL-both-10pct
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_file (`str`):
|
37 |
+
File containing the vocabulary.
|
38 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
39 |
+
The unknown token. A token not in the vocabulary
|
40 |
+
cannot be converted to an ID and is set to be
|
41 |
+
this token instead.
|
42 |
+
sep_token (`str`, *optional*, defaults to `"<eos>"`):
|
43 |
+
The separator token, which is used when building
|
44 |
+
a sequence from multiple sequences, e.g., two
|
45 |
+
sequences for sequence classification or for a
|
46 |
+
text and a question for question answering.
|
47 |
+
It is also used as the last token of a sequence
|
48 |
+
built with special tokens.
|
49 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
50 |
+
The token used for padding, for example, when
|
51 |
+
batching sequences of different lengths.
|
52 |
+
cls_token (`str`, *optional*, defaults to `"<bos>"`):
|
53 |
+
The classifier token which is used when doing
|
54 |
+
sequence classification (classification of the
|
55 |
+
whole sequence
|
56 |
+
instead of per-token classification). It is the
|
57 |
+
first token of the sequence when built with
|
58 |
+
special tokens.
|
59 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
60 |
+
The token used for masking values. This is the
|
61 |
+
token used when training this model with masked
|
62 |
+
language modeling. This is the token, which the
|
63 |
+
model will try to predict.
|
64 |
+
"""
|
65 |
+
|
66 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
67 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
68 |
+
model_input_names = ["input_ids", "attention_mask"]
|
69 |
+
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
vocab_file,
|
73 |
+
unk_token='<unk>',
|
74 |
+
sep_token='<eos>',
|
75 |
+
pad_token='<pad>',
|
76 |
+
cls_token='<bos>',
|
77 |
+
mask_token='<mask>',
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
if not os.path.isfile(vocab_file):
|
81 |
+
raise ValueError(
|
82 |
+
"Can't find a vocabulary file at path"
|
83 |
+
f"'{vocab_file}'."
|
84 |
+
)
|
85 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
86 |
+
vocab_from_file = json.load(vocab_handle)
|
87 |
+
# Re-index to account for special tokens
|
88 |
+
self.vocab = {
|
89 |
+
cls_token: 0,
|
90 |
+
sep_token: 1,
|
91 |
+
mask_token: 2,
|
92 |
+
pad_token: 3,
|
93 |
+
unk_token: 4,
|
94 |
+
**{k: v + 5 for k, v in vocab_from_file.items()}
|
95 |
+
}
|
96 |
+
|
97 |
+
self.ids_to_tokens = collections.OrderedDict(
|
98 |
+
[(ids, tok) for tok, ids in self.vocab.items()])
|
99 |
+
# Regex pattern taken from:
|
100 |
+
# https://github.com/pschwllr/MolecularTransformer
|
101 |
+
self.pattern = (
|
102 |
+
r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
|
103 |
+
)
|
104 |
+
self.regex_tokenizer = re.compile(self.pattern)
|
105 |
+
|
106 |
+
super().__init__(
|
107 |
+
unk_token=unk_token,
|
108 |
+
sep_token=sep_token,
|
109 |
+
pad_token=pad_token,
|
110 |
+
cls_token=cls_token,
|
111 |
+
mask_token=mask_token,
|
112 |
+
**kwargs,
|
113 |
+
)
|
114 |
+
|
115 |
+
@property
|
116 |
+
def vocab_size(self):
|
117 |
+
return len(self.vocab)
|
118 |
+
|
119 |
+
def get_vocab(self):
|
120 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
121 |
+
|
122 |
+
def _tokenize(self, text, **kwargs):
|
123 |
+
split_tokens = self.regex_tokenizer.findall(text)
|
124 |
+
return split_tokens
|
125 |
+
|
126 |
+
def _convert_token_to_id(self, token):
|
127 |
+
"""Converts token (str) in an id using the vocab."""
|
128 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
129 |
+
|
130 |
+
def _convert_id_to_token(self, index):
|
131 |
+
"""Converts index (integer) in a token (str) using the vocab."""
|
132 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
133 |
+
|
134 |
+
def convert_tokens_to_string(self, tokens):
|
135 |
+
"""Converts sequence of tokens (string) in a single string."""
|
136 |
+
out_string = "".join(tokens).strip()
|
137 |
+
return out_string
|
138 |
+
|
139 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
140 |
+
def build_inputs_with_special_tokens(
|
141 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
142 |
+
) -> List[int]:
|
143 |
+
"""
|
144 |
+
Build model inputs from a sequence or a pair of
|
145 |
+
sequences for sequence classification tasks by
|
146 |
+
concatenating and adding special tokens.
|
147 |
+
A BERT sequence has the following format:
|
148 |
+
|
149 |
+
- single sequence: `[CLS] X [SEP]`
|
150 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs to which the special tokens will
|
155 |
+
be added.
|
156 |
+
token_ids_1 (`List[int]`, *optional*):
|
157 |
+
Optional second list of IDs for sequence
|
158 |
+
pairs.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
`List[int]`: List of [input IDs](../glossary#input-ids)
|
162 |
+
with the appropriate special tokens.
|
163 |
+
"""
|
164 |
+
if token_ids_1 is None:
|
165 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
166 |
+
cls = [self.cls_token_id]
|
167 |
+
sep = [self.sep_token_id]
|
168 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
169 |
+
|
170 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
171 |
+
def get_special_tokens_mask(
|
172 |
+
self,
|
173 |
+
token_ids_0: List[int],
|
174 |
+
token_ids_1: Optional[List[int]] = None,
|
175 |
+
already_has_special_tokens: bool = False
|
176 |
+
) -> List[int]:
|
177 |
+
"""
|
178 |
+
Retrieve sequence ids from a token list that has no
|
179 |
+
special tokens added. This method is called when
|
180 |
+
adding special tokens using the tokenizer
|
181 |
+
`prepare_for_model` method.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
token_ids_0 (`List[int]`):
|
185 |
+
List of IDs.
|
186 |
+
token_ids_1 (`List[int]`, *optional*):
|
187 |
+
Optional second list of IDs for sequence pairs.
|
188 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
189 |
+
Whether the token list is already formatted
|
190 |
+
with special tokens for the model.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
`List[int]`: A list of integers in the range
|
194 |
+
[0, 1]: 1 for a special token, 0 for a sequence
|
195 |
+
token.
|
196 |
+
"""
|
197 |
+
|
198 |
+
if already_has_special_tokens:
|
199 |
+
return super().get_special_tokens_mask(
|
200 |
+
token_ids_0=token_ids_0,
|
201 |
+
token_ids_1=token_ids_1,
|
202 |
+
already_has_special_tokens=True
|
203 |
+
)
|
204 |
+
|
205 |
+
if token_ids_1 is not None:
|
206 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
207 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
208 |
+
|
209 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
210 |
+
def create_token_type_ids_from_sequences(
|
211 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
212 |
+
) -> List[int]:
|
213 |
+
"""
|
214 |
+
Create a mask from the two sequences passed to be
|
215 |
+
used in a sequence-pair classification task.
|
216 |
+
A BERT sequence pair mask has the following format:
|
217 |
+
|
218 |
+
```
|
219 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
220 |
+
| first sequence | second sequence |
|
221 |
+
```
|
222 |
+
|
223 |
+
If `token_ids_1` is `None`, this method only returns
|
224 |
+
the first portion of the mask (0s).
|
225 |
+
|
226 |
+
Args:
|
227 |
+
token_ids_0 (`List[int]`):
|
228 |
+
List of IDs.
|
229 |
+
token_ids_1 (`List[int]`, *optional*):
|
230 |
+
Optional second list of IDs for sequence
|
231 |
+
pairs.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
235 |
+
"""
|
236 |
+
sep = [self.sep_token_id]
|
237 |
+
cls = [self.cls_token_id]
|
238 |
+
if token_ids_1 is None:
|
239 |
+
return len(cls + token_ids_0 + sep) * [0]
|
240 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
241 |
+
|
242 |
+
def save_vocabulary(
|
243 |
+
self, save_directory: str,
|
244 |
+
filename_prefix: Optional[str] = None
|
245 |
+
) -> Union[Tuple[str], None]:
|
246 |
+
if not os.path.isdir(save_directory):
|
247 |
+
logger.error(
|
248 |
+
f"Vocabulary path ({save_directory}) should"
|
249 |
+
"be a directory.")
|
250 |
+
return None
|
251 |
+
vocab_file = os.path.join(
|
252 |
+
save_directory,
|
253 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
254 |
+
)
|
255 |
+
|
256 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
257 |
+
f.write(
|
258 |
+
json.dumps(
|
259 |
+
self.vocab,
|
260 |
+
indent=2,
|
261 |
+
sort_keys=True,
|
262 |
+
ensure_ascii=False
|
263 |
+
) + "\n")
|
264 |
+
return (vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<bos>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<eos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<mask>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<pad>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<unk>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"auto_map": {
|
45 |
+
"AutoTokenizer": [
|
46 |
+
"tokenizer.QM9Tokenizer",
|
47 |
+
null
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"clean_up_tokenization_spaces": true,
|
51 |
+
"cls_token": "<bos>",
|
52 |
+
"mask_token": "<mask>",
|
53 |
+
"model_max_length": 1000000000000000019884624838656,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"sep_token": "<eos>",
|
56 |
+
"tokenizer_class": "QM9Tokenizer",
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"#": 5,
|
3 |
+
"(": 6,
|
4 |
+
")": 7,
|
5 |
+
"-": 8,
|
6 |
+
"1": 9,
|
7 |
+
"2": 10,
|
8 |
+
"3": 11,
|
9 |
+
"4": 12,
|
10 |
+
"5": 13,
|
11 |
+
"<bos>": 0,
|
12 |
+
"<eos>": 1,
|
13 |
+
"<mask>": 2,
|
14 |
+
"<pad>": 3,
|
15 |
+
"<unk>": 4,
|
16 |
+
"=": 14,
|
17 |
+
"C": 15,
|
18 |
+
"F": 16,
|
19 |
+
"N": 17,
|
20 |
+
"O": 18,
|
21 |
+
"[C-]": 19,
|
22 |
+
"[CH-]": 20,
|
23 |
+
"[N+]": 21,
|
24 |
+
"[N-]": 22,
|
25 |
+
"[NH+]": 23,
|
26 |
+
"[NH2+]": 24,
|
27 |
+
"[NH3+]": 25,
|
28 |
+
"[O-]": 26,
|
29 |
+
"[c-]": 27,
|
30 |
+
"[cH-]": 28,
|
31 |
+
"[n-]": 29,
|
32 |
+
"[nH+]": 30,
|
33 |
+
"[nH]": 31,
|
34 |
+
"c": 32,
|
35 |
+
"n": 33,
|
36 |
+
"o": 34
|
37 |
+
}
|