File size: 4,955 Bytes
2af1de4
 
 
 
 
83175c1
2af1de4
 
 
83175c1
 
 
 
 
2af1de4
 
 
 
 
 
 
 
 
 
83175c1
2af1de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_cfUNL_entropy_0_01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen_cfUNL_entropy_0_01

This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0501
- Sft Loss: 3.9427
- Rewards/chosen: -4.3435
- Rewards/rejected: -5.1114
- Rewards/accuracies: 0.6810
- Rewards/margins: 0.7679
- Logps/rejected: -5.1114
- Logps/chosen: -4.3435
- Logits/rejected: -0.0604
- Logits/chosen: -0.1374

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0548        | 0.2141 | 400  | 0.0564          | 4.2256   | -4.8288        | -5.0421          | 0.5378             | 0.2133          | -5.0421        | -4.8288      | 0.4440          | 0.3255        |
| 0.0531        | 0.4282 | 800  | 0.0526          | 4.0511   | -4.5660        | -4.9392          | 0.6157             | 0.3732          | -4.9392        | -4.5660      | 0.2541          | 0.1294        |
| 0.0534        | 0.6422 | 1200 | 0.0519          | 4.1663   | -4.5650        | -5.0390          | 0.6387             | 0.4740          | -5.0390        | -4.5650      | 0.2502          | 0.1373        |
| 0.0511        | 0.8563 | 1600 | 0.0513          | 3.9593   | -4.4389        | -4.9222          | 0.6358             | 0.4833          | -4.9222        | -4.4389      | -0.0640         | -0.1524       |
| 0.0533        | 1.0704 | 2000 | 0.0509          | 3.9533   | -4.4316        | -4.9577          | 0.6484             | 0.5261          | -4.9577        | -4.4316      | -0.0257         | -0.1111       |
| 0.0527        | 1.2845 | 2400 | 0.0508          | 4.2818   | -4.7129        | -5.3738          | 0.6610             | 0.6609          | -5.3738        | -4.7129      | -0.0551         | -0.1386       |
| 0.0513        | 1.4986 | 2800 | 0.0506          | 4.1502   | -4.4933        | -5.1357          | 0.6818             | 0.6424          | -5.1357        | -4.4933      | -0.1729         | -0.2577       |
| 0.0527        | 1.7127 | 3200 | 0.0505          | 4.1082   | -4.4722        | -5.1175          | 0.6743             | 0.6453          | -5.1175        | -4.4722      | -0.0614         | -0.1521       |
| 0.0538        | 1.9267 | 3600 | 0.0502          | 4.0026   | -4.3928        | -5.1056          | 0.6706             | 0.7129          | -5.1056        | -4.3928      | -0.1185         | -0.1939       |
| 0.0495        | 2.1408 | 4000 | 0.0502          | 4.0304   | -4.4251        | -5.1723          | 0.6825             | 0.7472          | -5.1723        | -4.4251      | -0.0488         | -0.1284       |
| 0.0522        | 2.3549 | 4400 | 0.0501          | 3.9711   | -4.3751        | -5.1111          | 0.6751             | 0.7360          | -5.1111        | -4.3751      | -0.1449         | -0.2170       |
| 0.0517        | 2.5690 | 4800 | 0.0501          | 4.0093   | -4.3976        | -5.1429          | 0.6832             | 0.7452          | -5.1429        | -4.3976      | -0.0508         | -0.1310       |
| 0.0496        | 2.7831 | 5200 | 0.0501          | 3.9605   | -4.3494        | -5.1084          | 0.6788             | 0.7590          | -5.1084        | -4.3494      | -0.0700         | -0.1475       |
| 0.0497        | 2.9972 | 5600 | 0.0501          | 3.9427   | -4.3435        | -5.1114          | 0.6810             | 0.7679          | -5.1114        | -4.3435      | -0.0604         | -0.1374       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1