File size: 4,951 Bytes
256623b 58f3217 256623b 58f3217 256623b 58f3217 256623b 58f3217 256623b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_orpo_entropy_0_01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qwen_orpo_entropy_0_01
This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5589
- Sft Loss: 3.3163
- Rewards/chosen: -3.1855
- Rewards/rejected: -4.1739
- Rewards/accuracies: 0.7226
- Rewards/margins: 0.9884
- Logps/rejected: -4.1739
- Logps/chosen: -3.1855
- Logits/rejected: 0.1645
- Logits/chosen: 0.0521
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.7198 | 0.2141 | 400 | 0.7213 | 1.4421 | -1.5116 | -1.6721 | 0.5556 | 0.1605 | -1.6721 | -1.5116 | 0.3831 | 0.2918 |
| 0.6256 | 0.4282 | 800 | 0.6211 | 2.0645 | -2.1064 | -2.5196 | 0.6654 | 0.4133 | -2.5196 | -2.1064 | 0.4328 | 0.3408 |
| 0.6247 | 0.6422 | 1200 | 0.5880 | 2.6367 | -2.5144 | -3.0951 | 0.6966 | 0.5807 | -3.0951 | -2.5144 | 0.4051 | 0.3038 |
| 0.5355 | 0.8563 | 1600 | 0.5751 | 2.5635 | -2.4305 | -2.9974 | 0.7062 | 0.5669 | -2.9974 | -2.4305 | 0.4192 | 0.3133 |
| 0.6075 | 1.0704 | 2000 | 0.5675 | 2.6770 | -2.5347 | -3.1956 | 0.7166 | 0.6609 | -3.1956 | -2.5347 | 0.3536 | 0.2455 |
| 0.5886 | 1.2845 | 2400 | 0.5600 | 2.9406 | -2.8008 | -3.5986 | 0.7292 | 0.7978 | -3.5986 | -2.8008 | 0.2408 | 0.1351 |
| 0.5549 | 1.4986 | 2800 | 0.5573 | 2.8692 | -2.7229 | -3.5062 | 0.7248 | 0.7833 | -3.5062 | -2.7229 | 0.2546 | 0.1468 |
| 0.5785 | 1.7127 | 3200 | 0.5549 | 2.8827 | -2.7303 | -3.5085 | 0.7240 | 0.7782 | -3.5085 | -2.7303 | 0.2599 | 0.1531 |
| 0.5649 | 1.9267 | 3600 | 0.5509 | 2.9742 | -2.8066 | -3.6363 | 0.7240 | 0.8296 | -3.6363 | -2.8066 | 0.2062 | 0.0982 |
| 0.4683 | 2.1408 | 4000 | 0.5601 | 3.3501 | -3.1588 | -4.1100 | 0.7196 | 0.9512 | -4.1100 | -3.1588 | 0.1350 | 0.0257 |
| 0.491 | 2.3549 | 4400 | 0.5604 | 3.3569 | -3.2270 | -4.2111 | 0.7203 | 0.9841 | -4.2111 | -3.2270 | 0.2088 | 0.0922 |
| 0.4967 | 2.5690 | 4800 | 0.5589 | 3.2861 | -3.1626 | -4.1414 | 0.7226 | 0.9787 | -4.1414 | -3.1626 | 0.1660 | 0.0539 |
| 0.439 | 2.7831 | 5200 | 0.5584 | 3.3040 | -3.1772 | -4.1641 | 0.7211 | 0.9869 | -4.1641 | -3.1772 | 0.1462 | 0.0352 |
| 0.4704 | 2.9972 | 5600 | 0.5590 | 3.3163 | -3.1855 | -4.1739 | 0.7226 | 0.9884 | -4.1739 | -3.1855 | 0.1645 | 0.0521 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|