yamete4 commited on
Commit
3bff105
1 Parent(s): b669c6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -212
README.md CHANGED
@@ -9,70 +9,6 @@ tags:
9
  license: mit
10
  ---
11
 
12
- # Model Card for Model ID
13
-
14
- <!-- Provide a quick summary of what the model is/does. -->
15
-
16
-
17
-
18
- ## Model Details
19
-
20
- ### Model Description
21
-
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
-
25
-
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
-
34
- ### Model Sources [optional]
35
-
36
- <!-- Provide the basic links for the model. -->
37
-
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
41
-
42
- ## Uses
43
-
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
- ### Direct Use
47
-
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
-
58
- ### Out-of-Scope Use
59
-
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
-
70
- ### Recommendations
71
-
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
-
76
  ## How to Get Started with the Model
77
  ```python
78
  import torch
@@ -81,159 +17,14 @@ Users (both direct and downstream) should be made aware of the risks, biases and
81
  from transformers import AutoModelForCausalLM
82
 
83
  config = PeftConfig.from_pretrained("yamete4/codegen-350M-mono-QLoRa-flytech")
84
- model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono")
 
85
  model = PeftModel.from_pretrained(model, "yamete4/codegen-350M-mono-QLoRa-flytech")
86
 
87
- input_ids = tokenizer(
88
- context,
89
- truncation=True,
90
- padding=True,
91
- return_tensors='pt',
92
- pad_token_id=pad_token_id,
93
- ).input_ids
94
-
95
- input_ids_len = input_ids.shape[1]
96
-
97
- with torch.no_grad():
98
- input_ids = input_ids
99
- tokens = model.generate(
100
- input_ids,
101
- do_sample=True,
102
- num_return_sequences=num_return_sequences,
103
- temperature=temp,
104
- max_length=input_ids_len + max_length_sample,
105
- top_p=top_p,
106
- use_cache=True,
107
- )
108
- text = tokenizer.batch_decode(tokens[:, input_ids_len:, ...])
109
-
110
- ```
111
- [More Information Needed]
112
-
113
- ## Training Details
114
-
115
- ### Training Data
116
-
117
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
118
-
119
- [More Information Needed]
120
-
121
- ### Training Procedure
122
-
123
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
124
-
125
- #### Preprocessing [optional]
126
-
127
- [More Information Needed]
128
-
129
-
130
- #### Training Hyperparameters
131
-
132
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
133
-
134
- #### Speeds, Sizes, Times [optional]
135
-
136
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
137
 
138
- [More Information Needed]
139
 
140
- ## Evaluation
141
-
142
- <!-- This section describes the evaluation protocols and provides the results. -->
143
-
144
- ### Testing Data, Factors & Metrics
145
-
146
- #### Testing Data
147
-
148
- <!-- This should link to a Dataset Card if possible. -->
149
-
150
- [More Information Needed]
151
-
152
- #### Factors
153
-
154
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
155
-
156
- [More Information Needed]
157
-
158
- #### Metrics
159
-
160
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
161
-
162
- [More Information Needed]
163
-
164
- ### Results
165
-
166
- [More Information Needed]
167
-
168
- #### Summary
169
-
170
-
171
-
172
- ## Model Examination [optional]
173
-
174
- <!-- Relevant interpretability work for the model goes here -->
175
-
176
- [More Information Needed]
177
-
178
- ## Environmental Impact
179
-
180
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
181
-
182
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
183
-
184
- - **Hardware Type:** [More Information Needed]
185
- - **Hours used:** [More Information Needed]
186
- - **Cloud Provider:** [More Information Needed]
187
- - **Compute Region:** [More Information Needed]
188
- - **Carbon Emitted:** [More Information Needed]
189
-
190
- ## Technical Specifications [optional]
191
-
192
- ### Model Architecture and Objective
193
-
194
- [More Information Needed]
195
-
196
- ### Compute Infrastructure
197
-
198
- [More Information Needed]
199
-
200
- #### Hardware
201
-
202
- [More Information Needed]
203
-
204
- #### Software
205
-
206
- [More Information Needed]
207
-
208
- ## Citation [optional]
209
-
210
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
211
-
212
- **BibTeX:**
213
-
214
- [More Information Needed]
215
-
216
- **APA:**
217
-
218
- [More Information Needed]
219
-
220
- ## Glossary [optional]
221
-
222
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
223
-
224
- [More Information Needed]
225
-
226
- ## More Information [optional]
227
-
228
- [More Information Needed]
229
-
230
- ## Model Card Authors [optional]
231
-
232
- [More Information Needed]
233
-
234
- ## Model Card Contact
235
 
236
- [More Information Needed]
237
  ### Framework versions
238
 
239
  - PEFT 0.9.0
 
9
  license: mit
10
  ---
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ## How to Get Started with the Model
13
  ```python
14
  import torch
 
17
  from transformers import AutoModelForCausalLM
18
 
19
  config = PeftConfig.from_pretrained("yamete4/codegen-350M-mono-QLoRa-flytech")
20
+ model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono",
21
+ quantization_config=config,)
22
  model = PeftModel.from_pretrained(model, "yamete4/codegen-350M-mono-QLoRa-flytech")
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
25
 
26
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
 
28
  ### Framework versions
29
 
30
  - PEFT 0.9.0