File size: 4,666 Bytes
7eb262a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.2102 | 0.02 | 1000 | 2.7478 |
| 2.359 | 0.03 | 2000 | 2.2031 |
| 2.0974 | 0.05 | 3000 | 1.9751 |
| 1.9383 | 0.06 | 4000 | 1.8321 |
| 1.8346 | 0.08 | 5000 | 1.7406 |
| 1.7547 | 0.09 | 6000 | 1.6731 |
| 1.6994 | 0.11 | 7000 | 1.6212 |
| 1.6632 | 0.12 | 8000 | 1.5842 |
| 1.6237 | 0.14 | 9000 | 1.5506 |
| 1.5986 | 0.15 | 10000 | 1.5247 |
| 1.5749 | 0.17 | 11000 | 1.4994 |
| 1.5466 | 0.18 | 12000 | 1.4783 |
| 1.5254 | 0.2 | 13000 | 1.4579 |
| 1.5085 | 0.21 | 14000 | 1.4420 |
| 1.4884 | 0.23 | 15000 | 1.4235 |
| 1.4842 | 0.25 | 16000 | 1.4088 |
| 1.4618 | 0.26 | 17000 | 1.3957 |
| 1.4479 | 0.28 | 18000 | 1.3825 |
| 1.4376 | 0.29 | 19000 | 1.3716 |
| 1.4225 | 0.31 | 20000 | 1.3583 |
| 1.4151 | 0.32 | 21000 | 1.3476 |
| 1.4021 | 0.34 | 22000 | 1.3359 |
| 1.3956 | 0.35 | 23000 | 1.3245 |
| 1.3839 | 0.37 | 24000 | 1.3159 |
| 1.3741 | 0.38 | 25000 | 1.3060 |
| 1.3635 | 0.4 | 26000 | 1.2950 |
| 1.3491 | 0.41 | 27000 | 1.2844 |
| 1.3462 | 0.43 | 28000 | 1.2760 |
| 1.3317 | 0.44 | 29000 | 1.2676 |
| 1.3249 | 0.46 | 30000 | 1.2584 |
| 1.3164 | 0.48 | 31000 | 1.2486 |
| 1.3055 | 0.49 | 32000 | 1.2406 |
| 1.3006 | 0.51 | 33000 | 1.2327 |
| 1.2906 | 0.52 | 34000 | 1.2225 |
| 1.2821 | 0.54 | 35000 | 1.2135 |
| 1.2677 | 0.55 | 36000 | 1.2068 |
| 1.2562 | 0.57 | 37000 | 1.1981 |
| 1.2541 | 0.58 | 38000 | 1.1896 |
| 1.2377 | 0.6 | 39000 | 1.1814 |
| 1.2346 | 0.61 | 40000 | 1.1726 |
| 1.2251 | 0.63 | 41000 | 1.1647 |
| 1.2175 | 0.64 | 42000 | 1.1575 |
| 1.2112 | 0.66 | 43000 | 1.1486 |
| 1.2021 | 0.67 | 44000 | 1.1410 |
| 1.1888 | 0.69 | 45000 | 1.1339 |
| 1.1939 | 0.71 | 46000 | 1.1259 |
| 1.18 | 0.72 | 47000 | 1.1198 |
| 1.1698 | 0.74 | 48000 | 1.1130 |
| 1.1634 | 0.75 | 49000 | 1.1063 |
| 1.1593 | 0.77 | 50000 | 1.1006 |
| 1.1545 | 0.78 | 51000 | 1.0946 |
| 1.1478 | 0.8 | 52000 | 1.0896 |
| 1.1443 | 0.81 | 53000 | 1.0855 |
| 1.1365 | 0.83 | 54000 | 1.0808 |
| 1.1332 | 0.84 | 55000 | 1.0773 |
| 1.1336 | 0.86 | 56000 | 1.0736 |
| 1.1276 | 0.87 | 57000 | 1.0711 |
| 1.1241 | 0.89 | 58000 | 1.0686 |
| 1.123 | 0.9 | 59000 | 1.0665 |
| 1.1187 | 0.92 | 60000 | 1.0647 |
| 1.1123 | 0.93 | 61000 | 1.0636 |
| 1.1159 | 0.95 | 62000 | 1.0628 |
| 1.1133 | 0.97 | 63000 | 1.0623 |
| 1.1181 | 0.98 | 64000 | 1.0621 |
| 1.1125 | 1.0 | 65000 | 1.0621 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|