File size: 4,666 Bytes
7eb262a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codeparrot-ds

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0621

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.2102        | 0.02  | 1000  | 2.7478          |
| 2.359         | 0.03  | 2000  | 2.2031          |
| 2.0974        | 0.05  | 3000  | 1.9751          |
| 1.9383        | 0.06  | 4000  | 1.8321          |
| 1.8346        | 0.08  | 5000  | 1.7406          |
| 1.7547        | 0.09  | 6000  | 1.6731          |
| 1.6994        | 0.11  | 7000  | 1.6212          |
| 1.6632        | 0.12  | 8000  | 1.5842          |
| 1.6237        | 0.14  | 9000  | 1.5506          |
| 1.5986        | 0.15  | 10000 | 1.5247          |
| 1.5749        | 0.17  | 11000 | 1.4994          |
| 1.5466        | 0.18  | 12000 | 1.4783          |
| 1.5254        | 0.2   | 13000 | 1.4579          |
| 1.5085        | 0.21  | 14000 | 1.4420          |
| 1.4884        | 0.23  | 15000 | 1.4235          |
| 1.4842        | 0.25  | 16000 | 1.4088          |
| 1.4618        | 0.26  | 17000 | 1.3957          |
| 1.4479        | 0.28  | 18000 | 1.3825          |
| 1.4376        | 0.29  | 19000 | 1.3716          |
| 1.4225        | 0.31  | 20000 | 1.3583          |
| 1.4151        | 0.32  | 21000 | 1.3476          |
| 1.4021        | 0.34  | 22000 | 1.3359          |
| 1.3956        | 0.35  | 23000 | 1.3245          |
| 1.3839        | 0.37  | 24000 | 1.3159          |
| 1.3741        | 0.38  | 25000 | 1.3060          |
| 1.3635        | 0.4   | 26000 | 1.2950          |
| 1.3491        | 0.41  | 27000 | 1.2844          |
| 1.3462        | 0.43  | 28000 | 1.2760          |
| 1.3317        | 0.44  | 29000 | 1.2676          |
| 1.3249        | 0.46  | 30000 | 1.2584          |
| 1.3164        | 0.48  | 31000 | 1.2486          |
| 1.3055        | 0.49  | 32000 | 1.2406          |
| 1.3006        | 0.51  | 33000 | 1.2327          |
| 1.2906        | 0.52  | 34000 | 1.2225          |
| 1.2821        | 0.54  | 35000 | 1.2135          |
| 1.2677        | 0.55  | 36000 | 1.2068          |
| 1.2562        | 0.57  | 37000 | 1.1981          |
| 1.2541        | 0.58  | 38000 | 1.1896          |
| 1.2377        | 0.6   | 39000 | 1.1814          |
| 1.2346        | 0.61  | 40000 | 1.1726          |
| 1.2251        | 0.63  | 41000 | 1.1647          |
| 1.2175        | 0.64  | 42000 | 1.1575          |
| 1.2112        | 0.66  | 43000 | 1.1486          |
| 1.2021        | 0.67  | 44000 | 1.1410          |
| 1.1888        | 0.69  | 45000 | 1.1339          |
| 1.1939        | 0.71  | 46000 | 1.1259          |
| 1.18          | 0.72  | 47000 | 1.1198          |
| 1.1698        | 0.74  | 48000 | 1.1130          |
| 1.1634        | 0.75  | 49000 | 1.1063          |
| 1.1593        | 0.77  | 50000 | 1.1006          |
| 1.1545        | 0.78  | 51000 | 1.0946          |
| 1.1478        | 0.8   | 52000 | 1.0896          |
| 1.1443        | 0.81  | 53000 | 1.0855          |
| 1.1365        | 0.83  | 54000 | 1.0808          |
| 1.1332        | 0.84  | 55000 | 1.0773          |
| 1.1336        | 0.86  | 56000 | 1.0736          |
| 1.1276        | 0.87  | 57000 | 1.0711          |
| 1.1241        | 0.89  | 58000 | 1.0686          |
| 1.123         | 0.9   | 59000 | 1.0665          |
| 1.1187        | 0.92  | 60000 | 1.0647          |
| 1.1123        | 0.93  | 61000 | 1.0636          |
| 1.1159        | 0.95  | 62000 | 1.0628          |
| 1.1133        | 0.97  | 63000 | 1.0623          |
| 1.1181        | 0.98  | 64000 | 1.0621          |
| 1.1125        | 1.0   | 65000 | 1.0621          |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3