File size: 76,518 Bytes
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
 
b1308ae
 
b0f0a2f
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
b1308ae
b0f0a2f
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
 
 
 
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
 
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
b1308ae
 
 
b0f0a2f
 
b1308ae
 
 
 
 
 
 
 
 
 
b0f0a2f
 
b1308ae
b0f0a2f
b1308ae
 
 
 
 
 
 
b0f0a2f
b1308ae
 
 
 
 
b0f0a2f
 
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
 
b1308ae
 
 
b0f0a2f
b1308ae
 
 
b0f0a2f
 
b1308ae
 
b0f0a2f
 
 
 
 
 
 
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f0a2f
 
b1308ae
b0f0a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1308ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
# coding=utf-8
# Copyright 2022 ColaLab-UoE (https://colalab.ai/), Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OmniGenome model."""

import math
import random
import warnings
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import add_start_docstrings, PreTrainedModel

from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    MaskedLMOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)

from transformers.pytorch_utils import (
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)

from transformers.utils import (
    logging,
    add_code_sample_docstrings,
    add_start_docstrings_to_model_forward,
)

from .configuration_omnigenome import OmniGenomeConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "yangheng/OmniGenome-52M"
_CONFIG_FOR_DOC = "OmniGenomeConfig"

OmniGenome_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "yangheng/OmniGenome-52M",
    # This is not a complete list of all OmniGenome models!
    # See all OmniGenome models at https://huggingface.co/models?filter=OmniGenome
]


def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(x, cos, sin):
    cos = cos[:, :, : x.shape[-2], :]
    sin = sin[:, :, : x.shape[-2], :]

    return (x * cos) + (rotate_half(x) * sin)


def gelu(x):
    """

    This is the gelu implementation from the original OmniGenome repo. Using F.gelu yields subtly wrong results.

    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def symmetrize(x):
    "Make layer symmetric in final two dimensions, used for contact prediction."
    return x + x.transpose(-1, -2)


def average_product_correct(x):
    "Perform average product correct, used for contact prediction."
    a1 = x.sum(-1, keepdims=True)
    a2 = x.sum(-2, keepdims=True)
    a12 = x.sum((-1, -2), keepdims=True)

    avg = a1 * a2
    avg.div_(a12)  # in-place to reduce memory
    normalized = x - avg
    return normalized


# Copied from transformers.models.esm.modeling_esm.RotaryEmbedding
class RotaryEmbedding(torch.nn.Module):
    """

    Rotary position embeddings based on those in

    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation

    matrices which depend on their relative positions.

    """

    def __init__(self, dim: int):
        super().__init__()
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        inv_freq = inv_freq
        self.register_buffer("inv_freq", inv_freq)

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def _update_cos_sin_tables(self, x, seq_dimension=2):
        seq_len = x.shape[seq_dimension]

        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
            self._seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
                self.inv_freq
            )
            freqs = torch.outer(t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self._cos_cached = emb.cos()[None, None, :, :]
            self._sin_cached = emb.sin()[None, None, :, :]

        return self._cos_cached, self._sin_cached

    def forward(

            self, q: torch.Tensor, k: torch.Tensor

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
            k, seq_dimension=-2
        )

        return (
            apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


# Copied from transformers.models.esm.modeling_esm.EsmContactPredictionHead with Esm->OmniGenome
class OmniGenomeContactPredictionHead(nn.Module):
    """Performs symmetrization, apc, and computes a logistic regression on the output features"""

    def __init__(

            self,

            in_features: int,

            bias=True,

            eos_idx: int = 2,

    ):
        super().__init__()
        self.in_features = in_features
        self.eos_idx = eos_idx
        self.regression = nn.Linear(in_features, 1, bias)
        self.activation = nn.Sigmoid()

    def forward(self, tokens, attentions):
        # remove eos token attentions
        eos_mask = tokens.ne(self.eos_idx).to(attentions)
        eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
        attentions = attentions * eos_mask[:, None, None, :, :]
        attentions = attentions[..., :-1, :-1]
        # remove cls token attentions
        attentions = attentions[..., 1:, 1:]
        batch_size, layers, heads, seqlen, _ = attentions.size()
        attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)

        # features: batch x channels x tokens x tokens (symmetric)
        attentions = attentions.to(
            self.regression.weight.device
        )  # attentions always float32, may need to convert to float16
        attentions = average_product_correct(symmetrize(attentions))
        attentions = attentions.permute(0, 2, 3, 1)
        return self.activation(self.regression(attentions).squeeze(3))


# Copied from transformers.models.esm.modeling_esm.EsmEmbeddings with Esm->OmniGenome
class OmniGenomeEmbeddings(nn.Module):
    """

    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.

    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
        )

        if config.emb_layer_norm_before:
            self.layer_norm = nn.LayerNorm(
                config.hidden_size, eps=config.layer_norm_eps
            )
        else:
            self.layer_norm = None
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(
            config, "position_embedding_type", "absolute"
        )
        self.register_buffer(
            "position_ids",
            torch.arange(config.max_position_embeddings).expand((1, -1)),
            persistent=False,
        )

        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings,
            config.hidden_size,
            padding_idx=self.padding_idx,
        )
        self.token_dropout = config.token_dropout
        self.mask_token_id = config.mask_token_id

    def forward(

            self,

            input_ids=None,

            attention_mask=None,

            position_ids=None,

            inputs_embeds=None,

            past_key_values_length=0,

    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(
                    input_ids, self.padding_idx, past_key_values_length
                )
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(
                    inputs_embeds
                )

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        # Note that if we want to support OmniGenome-1 (not 1b!) in future then we need to support an
        # embedding_scale factor here.
        embeddings = inputs_embeds

        # Matt: OmniGenome has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
        # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
        # masked tokens are treated as if they were selected for input dropout and zeroed out.
        # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
        # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
        # This is analogous to the way that dropout layers scale down outputs during evaluation when not
        # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
        if self.token_dropout:
            embeddings = embeddings.masked_fill(
                (input_ids == self.mask_token_id).unsqueeze(-1), 0.0
            )
            mask_ratio_train = (
                    0.15 * 0.8
            )  # Hardcoded as the ratio used in all OmniGenome model training runs
            src_lengths = attention_mask.sum(-1)
            mask_ratio_observed = (input_ids == self.mask_token_id).sum(
                -1
            ).float() / src_lengths
            embeddings = (
                    embeddings
                    * (1 - mask_ratio_train)
                    / (1 - mask_ratio_observed)[:, None, None]
            ).to(embeddings.dtype)

        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings

        if self.layer_norm is not None:
            embeddings = self.layer_norm(embeddings)
        if attention_mask is not None:
            embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
                embeddings.dtype
            )
        # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
        # embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """

        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.



        Args:

            inputs_embeds: torch.Tensor



        Returns: torch.Tensor

        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1,
            sequence_length + self.padding_idx + 1,
            dtype=torch.long,
            device=inputs_embeds.device,
        )
        return position_ids.unsqueeze(0).expand(input_shape)


# Copied from transformers.models.esm.modeling_esm.EsmSelfAttention with Esm->OmniGenome
class OmniGenomeSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
                config, "embedding_size"
        ):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        self.rotary_embeddings = None
        if (
                self.position_embedding_type == "relative_key"
                or self.position_embedding_type == "relative_key_query"
        ):
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(
                2 * config.max_position_embeddings - 1, self.attention_head_size
            )
        elif self.position_embedding_type == "rotary":
            self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(

            self,

            hidden_states: torch.Tensor,

            attention_mask: Optional[torch.FloatTensor] = None,

            head_mask: Optional[torch.FloatTensor] = None,

            encoder_hidden_states: Optional[torch.FloatTensor] = None,

            encoder_attention_mask: Optional[torch.FloatTensor] = None,

            past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,

            output_attentions: Optional[bool] = False,

    ) -> Tuple[torch.Tensor]:
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
        # OmniGenome scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
        # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
        # OmniGenome code and fix rotary embeddings.
        query_layer = query_layer * self.attention_head_size ** -0.5

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        if self.position_embedding_type == "rotary":
            query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if (
                self.position_embedding_type == "relative_key"
                or self.position_embedding_type == "relative_key_query"
        ):
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(-1, 1)
            position_ids_r = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(
                distance + self.max_position_embeddings - 1
            )
            positional_embedding = positional_embedding.to(
                dtype=query_layer.dtype
            )  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                relative_position_scores_key = torch.einsum(
                    "bhrd,lrd->bhlr", key_layer, positional_embedding
                )
                attention_scores = (
                        attention_scores
                        + relative_position_scores_query
                        + relative_position_scores_key
                )

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in OmniGenomeModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (
            (context_layer, attention_probs) if output_attentions else (context_layer,)
        )

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs


# Copied from transformers.models.esm.modeling_esm.EsmSelfOutput with Esm->OmniGenome
class OmniGenomeSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = hidden_states + input_tensor
        return hidden_states


# Copied from transformers.models.esm.modeling_esm.EsmAttention with Esm->OmniGenome
class OmniGenomeAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = OmniGenomeSelfAttention(config)
        self.output = OmniGenomeSelfOutput(config)
        self.pruned_heads = set()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads,
            self.self.num_attention_heads,
            self.self.attention_head_size,
            self.pruned_heads,
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = (
                self.self.attention_head_size * self.self.num_attention_heads
        )
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            past_key_value=None,

            output_attentions=False,

    ):
        hidden_states_ln = self.LayerNorm(hidden_states)
        self_outputs = self.self(
            hidden_states_ln,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[
                                        1:
                                        ]  # add attentions if we output them
        return outputs


# Copied from transformers.models.esm.modeling_esm.EsmIntermediate with Esm->OmniGenome
class OmniGenomeIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = gelu(hidden_states)
        return hidden_states


# Copied from transformers.models.esm.modeling_esm.EsmOutput with Esm->OmniGenome
class OmniGenomeOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = hidden_states + input_tensor
        return hidden_states


# Copied from transformers.models.esm.modeling_esm.EsmLayer with Esm->OmniGenome
class OmniGenomeLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = OmniGenomeAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise RuntimeError(
                    f"{self} should be used as a decoder model if cross attention is added"
                )
            self.crossattention = OmniGenomeAttention(config)
        self.intermediate = OmniGenomeIntermediate(config)
        self.output = OmniGenomeOutput(config)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            past_key_value=None,

            output_attentions=False,

    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = (
            past_key_value[:2] if past_key_value is not None else None
        )
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[
                      1:
                      ]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise AttributeError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
                    " with cross-attention layers by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = (
                past_key_value[-2:] if past_key_value is not None else None
            )
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = (
                    outputs + cross_attention_outputs[1:-1]
            )  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = self.feed_forward_chunk(attention_output)

        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)
        return outputs

    def feed_forward_chunk(self, attention_output):
        attention_output_ln = self.LayerNorm(attention_output)
        intermediate_output = self.intermediate(attention_output_ln)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.models.esm.modeling_esm.EsmEncoder with Esm->OmniGenome
class OmniGenomeEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [OmniGenomeLayer(config) for _ in range(config.num_hidden_layers)]
        )
        self.emb_layer_norm_after = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps
        )
        self.gradient_checkpointing = False

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            past_key_values=None,

            use_cache=None,

            output_attentions=False,

            output_hidden_states=False,

            return_dict=True,

    ):
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                    "`use_cache=False`..."
                )
                use_cache = False
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = (
            () if output_attentions and self.config.add_cross_attention else None
        )

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if self.emb_layer_norm_after:
            hidden_states = self.emb_layer_norm_after(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->OmniGenome
class OmniGenomePooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


# Copied from transformers.models.esm.modeling_esm.EsmPreTrainedModel with Esm->OmniGenome
class OmniGenomePreTrainedModel(PreTrainedModel):
    """

    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained

    models.

    """

    config_class = OmniGenomeConfig
    base_model_prefix = "OmniGenome"
    supports_gradient_checkpointing = True
    _no_split_modules = [
        "OmniGenomeLayer",
        "OmniGenomeFoldTriangularSelfAttentionBlock",
        "OmniGenomeEmbeddings",
    ]

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


OmniGenome_START_DOCSTRING = r"""



    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the

    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads

    etc.)



    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.

    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage

    and behavior.



    Parameters:

        config ([`OmniGenomeConfig`]): Model configuration class with all the parameters of the

            model. Initializing with a config file does not load the weights associated with the model, only the

            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.

"""

OmniGenome_INPUTS_DOCSTRING = r"""

    Args:

        input_ids (`torch.LongTensor` of shape `({0})`):

            Indices of input sequence tokens in the vocabulary.



            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            [What are input IDs?](../glossary#input-ids)

        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):

            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.



            [What are attention masks?](../glossary#attention-mask)

        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):

            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,

            config.max_position_embeddings - 1]`.



            [What are position IDs?](../glossary#position-ids)

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):

            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:



            - 1 indicates the head is **not masked**,

            - 0 indicates the head is **masked**.



        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):

            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This

            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the

            model's internal embedding lookup matrix.

        output_attentions (`bool`, *optional*):

            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned

            tensors for more detail.

        output_hidden_states (`bool`, *optional*):

            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for

            more detail.

        return_dict (`bool`, *optional*):

            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.

"""


@add_start_docstrings(

    "The bare OmniGenome Model transformer outputting raw hidden-states without any specific head on top.",

    OmniGenome_START_DOCSTRING,

)
# Copied from transformers.models.esm.modeling_esm.EsmModel with Esm->OmniGenome
class OmniGenomeModel(OmniGenomePreTrainedModel):
    """



    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of

    cross-attention is added between the self-attention layers, following the architecture described in [Attention is

    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.



    To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set

    to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and

    `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.

    """

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = OmniGenomeEmbeddings(config)
        self.encoder = OmniGenomeEncoder(config)

        self.pooler = OmniGenomePooler(config) if add_pooling_layer else None

        self.contact_head = OmniGenomeContactPredictionHead(
            in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """

        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base

        class PreTrainedModel

        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(

        OmniGenome_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")

    )
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=BaseModelOutputWithPoolingAndCrossAttentions,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

            self,

            input_ids: Optional[torch.Tensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.Tensor] = None,

            head_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.Tensor] = None,

            encoder_hidden_states: Optional[torch.Tensor] = None,

            encoder_attention_mask: Optional[torch.Tensor] = None,

            past_key_values: Optional[List[torch.FloatTensor]] = None,

            use_cache: Optional[bool] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""

        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if

            the model is configured as a decoder.

        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in

            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.

        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):

            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.



            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that

            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all

            `decoder_input_ids` of shape `(batch_size, sequence_length)`.

        use_cache (`bool`, *optional*):

            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see

            `past_key_values`).

        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = (
            past_key_values[0][0].shape[2] if past_key_values is not None else 0
        )

        if attention_mask is None:
            attention_mask = torch.ones(
                ((batch_size, seq_length + past_key_values_length)), device=device
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            attention_mask, input_shape
        )

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            (
                encoder_batch_size,
                encoder_sequence_length,
                _,
            ) = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(
                encoder_attention_mask
            )
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = (
            self.pooler(sequence_output) if self.pooler is not None else None
        )

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )

    def predict_contacts(self, tokens, attention_mask):
        attns = self(
            tokens,
            attention_mask=attention_mask,
            return_dict=True,
            output_attentions=True,
        ).attentions
        attns = torch.stack(attns, dim=1)  # Matches the original model layout
        # In the original model, attentions for padding tokens are completely zeroed out.
        # This makes no difference most of the time because the other tokens won't attend to them,
        # but it does for the contact prediction task, which takes attentions as input,
        # so we have to mimic that here.
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
        return self.contact_head(tokens, attns)


@add_start_docstrings(

    """OmniGenome Model with a `language modeling` head on top.""", OmniGenome_START_DOCSTRING

)
# Copied from transformers.models.esm.modeling_esm.EsmForMaskedLM with Esm->OmniGenome
class OmniGenomeForMaskedLM(OmniGenomePreTrainedModel):
    _tied_weights_keys = ["lm_head.decoder.weight"]

    def __init__(self, config):
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `OmniGenomeForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
        self.lm_head = OmniGenomeLMHead(config)
        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    @add_start_docstrings_to_model_forward(

        OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")

    )
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=MaskedLMOutput,

        config_class=_CONFIG_FOR_DOC,

        mask="<mask>",

    )
    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.LongTensor] = None,

            head_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.FloatTensor] = None,

            encoder_hidden_states: Optional[torch.FloatTensor] = None,

            encoder_attention_mask: Optional[torch.Tensor] = None,

            labels: Optional[torch.LongTensor] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

    ) -> Union[Tuple, MaskedLMOutput]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,

            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the

            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`

        kwargs (`Dict[str, any]`, optional, defaults to *{}*):

            Used to hide legacy arguments that have been deprecated.

        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.OmniGenome(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()

            labels = labels.to(prediction_scores.device)
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
            )

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return (
                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
            )

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def predict_contacts(self, tokens, attention_mask):
        return self.OmniGenome.predict_contacts(tokens, attention_mask=attention_mask)


# Copied from transformers.models.esm.modeling_esm.EsmLMHead with Esm->OmniGenome
class OmniGenomeLMHead(nn.Module):
    """OmniGenome Head for masked language modeling."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x) + self.bias
        return x


@add_start_docstrings(

    """

    OmniGenome Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled

    output) e.g. for GLUE tasks.

    """,

    OmniGenome_START_DOCSTRING,

)
class OmniGenomeForSequenceClassification(OmniGenomePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
        self.pooler = OmniGenomePooler(config)
        self.classifier = OmniGenomeClassificationHead(config)
        self.init_weights()

    @add_start_docstrings_to_model_forward(

        OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")

    )
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=SequenceClassifierOutput,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.LongTensor] = None,

            head_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.FloatTensor] = None,

            labels: Optional[torch.LongTensor] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,

            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If

            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.OmniGenome(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = outputs[0]
        last_hidden_state = self.dense(last_hidden_state)
        pooled_output = self.pooler(last_hidden_state)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)

            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                        labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(

    """

    OmniGenome Model with a token classification head on top (a linear layer on top of the hidden-states output) 

    Note that this model is pre-trained for RNA secondary structure prediction and can be used for zero-shot RNA

    secondary structure prediction. Please find more advanced usages at https://github.com/yangheng95/OmniGenome

    This model can be fine-tuned for other token classification tasks.

    """,

    OmniGenome_START_DOCSTRING,

)
# Copied from transformers.models.esm.modeling_esm.EsmForTokenClassification with Esm->OmniGenome
class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
        self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
        self.classifier = torch.nn.Linear(self.config.hidden_size, self.num_labels)
        self.softmax = nn.Softmax(dim=-1)
        self.init_weights()

    @add_start_docstrings_to_model_forward(

        OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")

    )
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=TokenClassifierOutput,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.LongTensor] = None,

            head_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.FloatTensor] = None,

            labels: Optional[torch.LongTensor] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        """

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.OmniGenome(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]
        last_hidden_state = self.dense(last_hidden_state)
        logits = self.classifier(last_hidden_state)
        logits = self.softmax(logits)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @staticmethod
    def verify_secondary_structure(structure):
        structure = list(structure)
        left_brackets = []
        right_brackets = []
        for i, char in enumerate(structure):
            if char == "(":
                left_brackets.append(i)
            elif char == ")":
                if left_brackets:
                    left_brackets.pop()
                else:
                    right_brackets.append(i)

        for i in left_brackets:
            structure[i] = "."
        for i in right_brackets:
            structure[i] = "."

        structure = "".join(structure)

        return structure

    def predict_rna_structure(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            **kwargs

    ) -> List[str]:
        """

        Predicts the secondary structure of a sequence given the logits and attention mask.

        """
        outputs = self.forward(input_ids, attention_mask, **kwargs)

        logits = torch.argmax(outputs.logits, dim=-1)
        lengths = torch.sum(torch.ne(torch.tensor(0), attention_mask), dim=-1)
        structures = []
        for i, length in enumerate(lengths):
            structure = logits[i, :length].cpu().numpy()
            structure = "".join(self.config.id2label[label] for label in structure)
            if self.config.verify_ss:
                structure = self.verify_secondary_structure(structure)
            structures.append(structure)
        return structures


@add_start_docstrings(

    """

    This is not a standard Seq2Seq model. Instead, this model is designed for RNA design tasks.

    This is the OmniGenome Model with a simple genetic algorithm based RNA design head on top. 

    """,

    OmniGenome_START_DOCSTRING,

)
class OmniGenomeModelForSeq2SeqLM(OmniGenomePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
        self.lm_head = OmniGenomeLMHead(config)
        self.num_generation = config.num_generation
        self.num_population = config.num_population
        self.init_weights()

        self.tokenizer = None
        self.predict_structure = None

        warnings.warn(f"This model {self.__class__.__name__} is not a real Seq2Seq model. "
                      f"Instead, this model is designed for RNA design tasks")

    @add_start_docstrings_to_model_forward(

        OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")

    )
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=TokenClassifierOutput,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.LongTensor] = None,

            head_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.FloatTensor] = None,

            labels: Optional[torch.LongTensor] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = True,

            return_dict: Optional[bool] = None,

    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        """
        raise NotImplementedError("This model is not designed for standard Seq2Seq tasks. "
                                  "Use model.rna_sequence_design() for RNA sequences design instead.")

    def rna_sequence_design(

            self,

            structure: str,

            predict_structure_func=None,

            **kwargs

    ) -> List[str]:
        """

        Assemble the RNA sequence given the reference sequence structure

        """
        if self.tokenizer is None:
            tokenizer = kwargs.get("tokenizer", None)
            if tokenizer is None:
                from transformers import AutoTokenizer
                self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
            else:
                self.tokenizer = tokenizer

        candidates = self.genetic_algorithm_for_rna_design(structure, predict_structure_func=None, **kwargs)

        return candidates

    def genetic_algorithm_for_rna_design(self, structure, predict_structure_func=None, **kwargs):
        if predict_structure_func is None:
            import ViennaRNA

            def predict_structure(sequence):
                return ViennaRNA.fold(sequence)[0]

            predict_structure_func = predict_structure

        self.predict_structure = predict_structure_func
        mutation_ratio = kwargs.get("mutation_ratio", 0.2)
        num_population = kwargs.get("num_population", self.num_population)
        num_generation = kwargs.get("num_generation", self.num_generation)
        import tqdm
        population = self.init_population(structure, num_population)
        population = self.mlm_mutate(population, structure, mutation_ratio=mutation_ratio)
        for generation_id in tqdm.tqdm(range(num_generation), desc="Designing RNA Sequence"):
            population_fitness = self.sequence_fitness(population, structure)[:num_population]
            population = sorted(zip(population, population_fitness), key=lambda x: x[1])[:num_population]
            population = [x[0] for x in population]
            next_generation = population  # Elitism
            next_generation += self.crossover(population, structure)
            next_generation += self.mlm_mutate(next_generation, structure, mutation_ratio)
            fitness_values = self.sequence_fitness(next_generation, structure)
            next_generation = sorted(zip(next_generation, fitness_values), key=lambda x: x[1])

            candidate_sequences = []
            for sequence, fitness in next_generation:
                if fitness == 0:
                    candidate_sequences.append(sequence)
                else:
                    break
            if candidate_sequences:
                return candidate_sequences
            print(f"Generation {generation_id}: {next_generation[0][0]} with fitness {next_generation[0][1]}")
            population = [x[0] for x in next_generation[:num_population]]

        return []

    def init_population(self, structure, num_population):
        # Initialize lists to store population data and inputs for masked language model
        population = []
        mlm_inputs = []
        # Iterate over the number of individuals in the population
        for _ in range(num_population):  # Changed from self.num_population to num_population
            # Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
            masked_sequence = [
                random.choice(["A", "G", "C", "T", "<mask>"])
                for _ in range(len(structure))
            ]
            masked_sequence_str = "".join(masked_sequence)
            mlm_inputs.append(f"{masked_sequence_str}<eos>{''.join(structure)}")

        # Call a function to predict outputs using the masked language model
        outputs = self.mlm_predict(mlm_inputs, structure)

        # Decode the mlm outputs and construct the initial population
        for i in range(len(outputs)):
            sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
            fixed_sequence = [
                x if x in "AGCT" else random.choice(["G", "C"])
                for x, y in zip(sequence, list(mlm_inputs[i].replace('<mask>', '$')))
            ]
            population.append("".join(fixed_sequence))

        return population

    def mlm_mutate(self, population, structure, mutation_ratio=0.2):
        def mutate(sequence, mutation_rate=0.2):
            sequence = np.array(list(sequence), dtype=np.str_)
            probability_matrix = np.full(sequence.shape, mutation_rate)
            masked_indices = np.random.rand(*sequence.shape) < probability_matrix
            sequence[masked_indices] = "$"
            mut_seq = "".join(sequence.tolist()).replace("$", "<mask>")
            return mut_seq
        def mutate_with_spans_mask(sequence, mutation_rate=0.2):
            sequence = np.array(list(sequence), dtype=np.str_)
            length = len(sequence)
            num_mutations = int(mutation_rate * length)  # Total number of mutations is based on mutation rate
            # Decide the average span length; we assume mutation spans about 20% of the total mutations length
            average_span_length = random.randint(1, max(1, int(length * mutation_rate / 10)))
            # Initialize mutation points
            mutation_points = np.random.choice(length, num_mutations, replace=False)  # Start points for mutations
            # Create the mask
            mask = np.zeros(length, dtype=bool)
            for start in mutation_points:
                end = start + average_span_length
                if end > length:
                    end = length
                mask[start:end] = True  # Masking a span from start to end
            # Apply mask
            sequence[mask] = "<mask>"
            # Combine the masked parts with the rest of the sequence
            mutated_sequence = ''.join(sequence)
            # Since multiple consecutive '<mask>'s might occur, replace them with a single '<mask>'
            mutated_sequence = mutated_sequence.replace('<mask>' * average_span_length, '<mask>')
            return mutated_sequence

        # Initialize lists to store population data and inputs for masked language model
        mlm_inputs = []
        masked_sequences = []

        # Iterate over the number of individuals in the population
        for sequence in population:
            # Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
            if random.random() < 1:
                masked_sequence = mutate(sequence, mutation_ratio)
            else:
                masked_sequence = mutate_with_spans_mask(sequence, mutation_ratio)
            masked_sequences.append(masked_sequence)
            mlm_inputs.append(f"{masked_sequence}<eos>{''.join(structure)}")

        # Call a function to predict outputs using the masked language model
        outputs = self.mlm_predict(mlm_inputs, structure)

        mut_population = []

        # Decode the mlm outputs and construct the initial population
        for i in range(len(outputs)):
            sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
            fixed_sequence = [
                x if x in "AGCT" else random.choice(["G", "C"])
                for x, y in zip(sequence, list(masked_sequences[i].replace('<mask>', '$')))
            ]
            mut_population.append("".join(fixed_sequence))

        return mut_population

    def crossover(self, population, structure):
        crossover_population = []
        batch_crossover_inputs = []
        for i in range(len(population)):
            parent1, parent2 = random.choices(population, k=2)
            pos = random.randint(1, len(parent1) - 1)
            child1 = parent1[:pos] + "<mask>" * len(parent2[pos:])
            child2 = "<mask>" * len(parent1[:pos]) + parent2[pos:]
            batch_crossover_inputs.append(f"{child1}<eos>{structure}")
            batch_crossover_inputs.append(f"{child2}<eos>{structure}")

        outputs = self.mlm_predict(batch_crossover_inputs, structure)

        for i in range(len(outputs)):
            sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
            fixed_sequence = [
                x if x in "AGCT" else random.choice(["G", "C"])
                for x, y in zip(sequence, list(batch_crossover_inputs[i].replace('<mask>', '$')))
            ]
            crossover_population.append("".join(fixed_sequence))

        return crossover_population

    def sequence_fitness(self, sequences, structure):
        fitness_values = []
        structures = [self.predict_structure(sequence) for sequence in sequences]
        for predicted_structure in structures:
            scores = []
            for i in range(len(predicted_structure)):
                if predicted_structure[i] == structure[i]:
                    scores.append(1)
                elif (
                        predicted_structure[i] == ")"
                        and structure[i] == "("
                        or predicted_structure[i] == "("
                        and structure[i] == ")"
                ):
                    scores.append(-3)
                else:
                    scores.append(0)
            score = 1 - sum(scores) / len(structure)
            fitness_values.append(score)
        return fitness_values

    def mlm_predict(self, mlm_inputs, structure):
        batch_size = 4
        all_outputs = []
        from transformers import set_seed
        set_seed(random.randint(0, 99999999), deterministic=False)

        with torch.no_grad():
            for i in range(0, len(mlm_inputs), batch_size):
                batch_mlm_inputs = self.tokenizer(
                    mlm_inputs[i:i + batch_size],
                    padding=True,
                    max_length=len(mlm_inputs[0]) // 2,
                    truncation=True,
                    return_tensors="pt",
                )
                batch_mlm_inputs = batch_mlm_inputs.to(self.device)
                outputs = self.OmniGenome(**batch_mlm_inputs)[0]
                outputs = self.lm_head(outputs)
                outputs = outputs.argmax(dim=-1)
                all_outputs.append(outputs)
        outputs = torch.cat(all_outputs, dim=0)
        return outputs[:, 1:1 + len(structure)]


# Copied from transformers.models.esm.modeling_esm.EsmClassificationHead with Esm->OmniGenome
class OmniGenomeClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


def create_position_ids_from_input_ids(

        input_ids, padding_idx, past_key_values_length=0

):
    """

    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols

    are ignored. This is modified from fairseq's `utils.make_positions`.



    Args:

        x: torch.Tensor x:



    Returns: torch.Tensor

    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (
                                  torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
                          ) * mask
    return incremental_indices.long() + padding_idx