File size: 3,067 Bytes
4913ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efcde03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
language:
- en
tags:
- aspect-based-sentiment-analysis
- PyABSA
license: mit
datasets:
- laptop14
- restaurant14
- restaurant16
- ACL-Twitter
- MAMS 
- Television
- TShirt 
- Yelp 
metrics:
- accuracy
- macro-f1
widget: 
- text: "[CLS] when tables opened up, the manager sat another party before us. [SEP] manager [SEP] "
---

# Note
This model is training with 30k+ ABSA samples, see [ABSADatasets](https://github.com/yangheng95/ABSADatasets). Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)

# DeBERTa for aspect-based sentiment analysis
The `deberta-v3-large-absa` model for aspect-based sentiment analysis, trained with English datasets from [ABSADatasets](https://github.com/yangheng95/ABSADatasets).

## Training Model
This model is trained based on the FAST-LCF-BERT model with `microsoft/deberta-v3-large`, which comes from [PyABSA](https://github.com/yangheng95/PyABSA).
To track state-of-the-art models, please see [PyASBA](https://github.com/yangheng95/PyABSA).

## Usage 
```python3
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")

model = AutoModelForSequenceClassification.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
```

## Example in PyASBA
An [example](https://github.com/yangheng95/PyABSA/blob/release/demos/aspect_polarity_classification/train_apc_multilingual.py) for using FAST-LCF-BERT in PyASBA datasets.

## Datasets 
This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:
```
loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt

```
If you use  this model in your research, please cite our paper:
```
@article{YangZMT21,
  author    = {Heng Yang and
               Biqing Zeng and
               Mayi Xu and
               Tianxing Wang},
  title     = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
               Sentiment Dependency Learning},
  journal   = {CoRR},
  volume    = {abs/2110.08604},
  year      = {2021},
  url       = {https://arxiv.org/abs/2110.08604},
  eprinttype = {arXiv},
  eprint    = {2110.08604},
  timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```