--- library_name: transformers tags: - audio-classification - generated_from_trainer datasets: - voxceleb metrics: - accuracy model-index: - name: ecapa-tdnn-voxceleb1-c512-aam results: - task: name: Audio Classification type: audio-classification dataset: name: confit/voxceleb type: voxceleb config: verification split: train args: verification metrics: - name: Accuracy type: accuracy value: 0.9757901815736382 --- # ecapa-tdnn-voxceleb1-c512-aam This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset. It achieves the following results on the evaluation set: - Loss: 0.5840 - Accuracy: 0.9758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 256 - eval_batch_size: 1 - seed: 914 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 9.047 | 1.0 | 575 | 8.3662 | 0.4304 | | 5.3508 | 2.0 | 1150 | 4.0252 | 0.8191 | | 3.3124 | 3.0 | 1725 | 2.1083 | 0.9260 | | 2.3212 | 4.0 | 2300 | 1.2224 | 0.9435 | | 1.6276 | 5.0 | 2875 | 0.8229 | 0.9677 | | 1.1418 | 6.0 | 3450 | 0.5840 | 0.9758 | | 1.0484 | 7.0 | 4025 | 0.5781 | 0.9738 | | 0.0 | 8.0 | 4600 | nan | 0.0007 | | 0.0 | 9.0 | 5175 | nan | 0.0007 | | 0.0 | 10.0 | 5750 | nan | 0.0007 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.0.0+cu117 - Datasets 3.2.0 - Tokenizers 0.21.0