File size: 5,531 Bytes
8f84b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
from typing import List, Optional, Union
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import PaddingStrategy, TensorType, logging

logger = logging.get_logger(__name__)


class SvectorFeatureExtractor(SequenceFeatureExtractor):

    model_input_names = ["input_values", "attention_mask"]

    def __init__(
        self,
        feature_size=1,
        sampling_rate=16000,
        padding_value=0.0,
        return_attention_mask=False,
        do_normalize=True,
        **kwargs,
    ):
        super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize

    @staticmethod
    def zero_mean_unit_var_norm(
        input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
    ) -> List[np.ndarray]:
        """
        Every array in the list is normalized to have zero mean and unit variance
        """
        if attention_mask is not None:
            attention_mask = np.array(attention_mask, np.int32)
            normed_input_values = []

            for vector, length in zip(input_values, attention_mask.sum(-1)):
                normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
                if length < normed_slice.shape[0]:
                    normed_slice[length:] = padding_value

                normed_input_values.append(normed_slice)
        else:
            normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]

        return normed_input_values

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        padding: Union[bool, str, PaddingStrategy] = False,
        max_length: Optional[int] = None,
        truncation: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        sampling_rate: Optional[int] = None,
        **kwargs,
    ) -> BatchFeature:
        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
                    f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
                    f" {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                "It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        # always return batch
        if not is_batched:
            raw_speech = [raw_speech]

        # convert into correct format for padding
        encoded_inputs = BatchFeature({"input_values": raw_speech})

        padded_inputs = self.pad(
            encoded_inputs,
            padding=padding,
            max_length=max_length,
            truncation=truncation,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
        )

        # convert input values to correct format
        input_values = padded_inputs["input_values"]
        if not isinstance(input_values[0], np.ndarray):
            padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values]
        elif (
            not isinstance(input_values, np.ndarray)
            and isinstance(input_values[0], np.ndarray)
            and input_values[0].dtype is np.dtype(np.float64)
        ):
            padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values]
        elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64):
            padded_inputs["input_values"] = input_values.astype(np.float32)

        # convert attention_mask to correct format
        attention_mask = padded_inputs.get("attention_mask")
        if attention_mask is not None:
            padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]

        # zero-mean and unit-variance normalization
        if self.do_normalize:
            attention_mask = (
                attention_mask
                if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
                else None
            )
            padded_inputs["input_values"] = self.zero_mean_unit_var_norm(
                padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value
            )

        if return_tensors is not None:
            padded_inputs = padded_inputs.convert_to_tensors(return_tensors)

        return padded_inputs