File size: 23,450 Bytes
8d61bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
import math
import torch
import torch.nn as nn


class Deltas(torch.nn.Module):
    """Computes delta coefficients (time derivatives).
    Arguments
    ---------
    win_length : int
        Length of the window used to compute the time derivatives.
    Example
    -------
    >>> inputs = torch.randn([10, 101, 20])
    >>> compute_deltas = Deltas(input_size=inputs.size(-1))
    >>> features = compute_deltas(inputs)
    >>> features.shape
    torch.Size([10, 101, 20])
    """

    def __init__(
        self, input_size, window_length=5,
    ):
        super().__init__()
        self.n = (window_length - 1) // 2
        self.denom = self.n * (self.n + 1) * (2 * self.n + 1) / 3

        self.register_buffer(
            "kernel",
            torch.arange(-self.n, self.n + 1, dtype=torch.float32,).repeat(
                input_size, 1, 1
            ),
        )

    def forward(self, x):
        """Returns the delta coefficients.
        Arguments
        ---------
        x : tensor
            A batch of tensors.
        """
        # Managing multi-channel deltas reshape tensor (batch*channel,time)
        x = x.transpose(1, 2).transpose(2, -1)
        or_shape = x.shape
        if len(or_shape) == 4:
            x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])

        # Padding for time borders
        x = torch.nn.functional.pad(x, (self.n, self.n), mode="replicate")

        # Derivative estimation (with a fixed convolutional kernel)
        delta_coeff = (
            torch.nn.functional.conv1d(
                x, self.kernel.to(x.device), groups=x.shape[1]
            )
            / self.denom
        )

        # Retrieving the original dimensionality (for multi-channel case)
        if len(or_shape) == 4:
            delta_coeff = delta_coeff.reshape(
                or_shape[0], or_shape[1], or_shape[2], or_shape[3],
            )
        delta_coeff = delta_coeff.transpose(1, -1).transpose(2, -1)

        return delta_coeff


class Filterbank(torch.nn.Module):
    """computes filter bank (FBANK) features given spectral magnitudes.
    Arguments
    ---------
    n_mels : float
        Number of Mel filters used to average the spectrogram.
    log_mel : bool
        If True, it computes the log of the FBANKs.
    filter_shape : str
        Shape of the filters ('triangular', 'rectangular', 'gaussian').
    f_min : int
        Lowest frequency for the Mel filters.
    f_max : int
        Highest frequency for the Mel filters.
    n_fft : int
        Number of fft points of the STFT. It defines the frequency resolution
        (n_fft should be<= than win_len).
    sample_rate : int
        Sample rate of the input audio signal (e.g, 16000)
    power_spectrogram : float
        Exponent used for spectrogram computation.
    amin : float
        Minimum amplitude (used for numerical stability).
    ref_value : float
        Reference value used for the dB scale.
    top_db : float
        Minimum negative cut-off in decibels.
    freeze : bool
        If False, it the central frequency and the band of each filter are
        added into nn.parameters. If True, the standard frozen features
        are computed.
    param_change_factor: bool
        If freeze=False, this parameter affects the speed at which the filter
        parameters (i.e., central_freqs and bands) can be changed.  When high
        (e.g., param_change_factor=1) the filters change a lot during training.
        When low (e.g. param_change_factor=0.1) the filter parameters are more
        stable during training
    param_rand_factor: float
        This parameter can be used to randomly change the filter parameters
        (i.e, central frequencies and bands) during training.  It is thus a
        sort of regularization. param_rand_factor=0 does not affect, while
        param_rand_factor=0.15 allows random variations within +-15% of the
        standard values of the filter parameters (e.g., if the central freq
        is 100 Hz, we can randomly change it from 85 Hz to 115 Hz).
    Example
    -------
    >>> import torch
    >>> compute_fbanks = Filterbank()
    >>> inputs = torch.randn([10, 101, 201])
    >>> features = compute_fbanks(inputs)
    >>> features.shape
    torch.Size([10, 101, 40])
    """

    def __init__(
        self,
        n_mels=40,
        log_mel=True,
        filter_shape="triangular",
        f_min=0,
        f_max=8000,
        n_fft=400,
        sample_rate=16000,
        power_spectrogram=2,
        amin=1e-10,
        ref_value=1.0,
        top_db=80.0,
        param_change_factor=1.0,
        param_rand_factor=0.0,
        freeze=True,
    ):
        super().__init__()
        self.n_mels = n_mels
        self.log_mel = log_mel
        self.filter_shape = filter_shape
        self.f_min = f_min
        self.f_max = f_max
        self.n_fft = n_fft
        self.sample_rate = sample_rate
        self.power_spectrogram = power_spectrogram
        self.amin = amin
        self.ref_value = ref_value
        self.top_db = top_db
        self.freeze = freeze
        self.n_stft = self.n_fft // 2 + 1
        self.db_multiplier = math.log10(max(self.amin, self.ref_value))
        self.device_inp = torch.device("cpu")
        self.param_change_factor = param_change_factor
        self.param_rand_factor = param_rand_factor

        if self.power_spectrogram == 2:
            self.multiplier = 10
        else:
            self.multiplier = 20

        # Make sure f_min < f_max
        if self.f_min >= self.f_max:
            err_msg = "Require f_min: %f < f_max: %f" % (
                self.f_min,
                self.f_max,
            )
            print(err_msg)

        # Filter definition
        mel = torch.linspace(
            self._to_mel(self.f_min), self._to_mel(self.f_max), self.n_mels + 2
        )
        hz = self._to_hz(mel)

        # Computation of the filter bands
        band = hz[1:] - hz[:-1]
        self.band = band[:-1]
        self.f_central = hz[1:-1]

        # Adding the central frequency and the band to the list of nn param
        if not self.freeze:
            self.f_central = torch.nn.Parameter(
                self.f_central / (self.sample_rate * self.param_change_factor)
            )
            self.band = torch.nn.Parameter(
                self.band / (self.sample_rate * self.param_change_factor)
            )

        # Frequency axis
        all_freqs = torch.linspace(0, self.sample_rate // 2, self.n_stft)

        # Replicating for all the filters
        self.all_freqs_mat = all_freqs.repeat(self.f_central.shape[0], 1)

    def forward(self, spectrogram):
        """Returns the FBANks.
        Arguments
        ---------
        x : tensor
            A batch of spectrogram tensors.
        """
        # Computing central frequency and bandwidth of each filter
        f_central_mat = self.f_central.repeat(
            self.all_freqs_mat.shape[1], 1
        ).transpose(0, 1)
        band_mat = self.band.repeat(self.all_freqs_mat.shape[1], 1).transpose(
            0, 1
        )

        # Uncomment to print filter parameters
        # print(self.f_central*self.sample_rate * self.param_change_factor)
        # print(self.band*self.sample_rate* self.param_change_factor)

        # Creation of the multiplication matrix. It is used to create
        # the filters that average the computed spectrogram.
        if not self.freeze:
            f_central_mat = f_central_mat * (
                self.sample_rate
                * self.param_change_factor
                * self.param_change_factor
            )
            band_mat = band_mat * (
                self.sample_rate
                * self.param_change_factor
                * self.param_change_factor
            )

        # Regularization with random changes of filter central frequency and band
        elif self.param_rand_factor != 0 and self.training:
            rand_change = (
                1.0
                + torch.rand(2) * 2 * self.param_rand_factor
                - self.param_rand_factor
            )
            f_central_mat = f_central_mat * rand_change[0]
            band_mat = band_mat * rand_change[1]

        fbank_matrix = self._create_fbank_matrix(f_central_mat, band_mat).to(
            spectrogram.device
        )

        sp_shape = spectrogram.shape

        # Managing multi-channels case (batch, time, channels)
        if len(sp_shape) == 4:
            spectrogram = spectrogram.permute(0, 3, 1, 2)
            spectrogram = spectrogram.reshape(
                sp_shape[0] * sp_shape[3], sp_shape[1], sp_shape[2]
            )

        # FBANK computation
        fbanks = torch.matmul(spectrogram, fbank_matrix)
        if self.log_mel:
            fbanks = self._amplitude_to_DB(fbanks)

        # Reshaping in the case of multi-channel inputs
        if len(sp_shape) == 4:
            fb_shape = fbanks.shape
            fbanks = fbanks.reshape(
                sp_shape[0], sp_shape[3], fb_shape[1], fb_shape[2]
            )
            fbanks = fbanks.permute(0, 2, 3, 1)

        return fbanks

    @staticmethod
    def _to_mel(hz):
        """Returns mel-frequency value corresponding to the input
        frequency value in Hz.
        Arguments
        ---------
        x : float
            The frequency point in Hz.
        """
        return 2595 * math.log10(1 + hz / 700)

    @staticmethod
    def _to_hz(mel):
        """Returns hz-frequency value corresponding to the input
        mel-frequency value.
        Arguments
        ---------
        x : float
            The frequency point in the mel-scale.
        """
        return 700 * (10 ** (mel / 2595) - 1)

    def _triangular_filters(self, all_freqs, f_central, band):
        """Returns fbank matrix using triangular filters.
        Arguments
        ---------
        all_freqs : Tensor
            Tensor gathering all the frequency points.
        f_central : Tensor
            Tensor gathering central frequencies of each filter.
        band : Tensor
            Tensor gathering the bands of each filter.
        """

        # Computing the slops of the filters
        slope = (all_freqs - f_central) / band
        left_side = slope + 1.0
        right_side = -slope + 1.0

        # Adding zeros for negative values
        zero = torch.zeros(1, device=self.device_inp)
        fbank_matrix = torch.max(
            zero, torch.min(left_side, right_side)
        ).transpose(0, 1)

        return fbank_matrix

    def _rectangular_filters(self, all_freqs, f_central, band):
        """Returns fbank matrix using rectangular filters.
        Arguments
        ---------
        all_freqs : Tensor
            Tensor gathering all the frequency points.
        f_central : Tensor
            Tensor gathering central frequencies of each filter.
        band : Tensor
            Tensor gathering the bands of each filter.
        """

        # cut-off frequencies of the filters
        low_hz = f_central - band
        high_hz = f_central + band

        # Left/right parts of the filter
        left_side = right_size = all_freqs.ge(low_hz)
        right_size = all_freqs.le(high_hz)

        fbank_matrix = (left_side * right_size).float().transpose(0, 1)

        return fbank_matrix

    def _gaussian_filters(
        self, all_freqs, f_central, band, smooth_factor=torch.tensor(2)
    ):
        """Returns fbank matrix using gaussian filters.
        Arguments
        ---------
        all_freqs : Tensor
            Tensor gathering all the frequency points.
        f_central : Tensor
            Tensor gathering central frequencies of each filter.
        band : Tensor
            Tensor gathering the bands of each filter.
        smooth_factor: Tensor
            Smoothing factor of the gaussian filter. It can be used to employ
            sharper or flatter filters.
        """
        fbank_matrix = torch.exp(
            -0.5 * ((all_freqs - f_central) / (band / smooth_factor)) ** 2
        ).transpose(0, 1)

        return fbank_matrix

    def _create_fbank_matrix(self, f_central_mat, band_mat):
        """Returns fbank matrix to use for averaging the spectrum with
           the set of filter-banks.
        Arguments
        ---------
        f_central : Tensor
            Tensor gathering central frequencies of each filter.
        band : Tensor
            Tensor gathering the bands of each filter.
        smooth_factor: Tensor
            Smoothing factor of the gaussian filter. It can be used to employ
            sharper or flatter filters.
        """
        if self.filter_shape == "triangular":
            fbank_matrix = self._triangular_filters(
                self.all_freqs_mat, f_central_mat, band_mat
            )

        elif self.filter_shape == "rectangular":
            fbank_matrix = self._rectangular_filters(
                self.all_freqs_mat, f_central_mat, band_mat
            )

        else:
            fbank_matrix = self._gaussian_filters(
                self.all_freqs_mat, f_central_mat, band_mat
            )

        return fbank_matrix

    def _amplitude_to_DB(self, x):
        """Converts  linear-FBANKs to log-FBANKs.
        Arguments
        ---------
        x : Tensor
            A batch of linear FBANK tensors.
        """

        x_db = self.multiplier * torch.log10(torch.clamp(x, min=self.amin))
        x_db -= self.multiplier * self.db_multiplier

        # Setting up dB max. It is the max over time and frequency,
        # Hence, of a whole sequence (sequence-dependent)
        new_x_db_max = x_db.amax(dim=(-2, -1)) - self.top_db

        # Clipping to dB max. The view is necessary as only a scalar is obtained
        # per sequence.
        x_db = torch.max(x_db, new_x_db_max.view(x_db.shape[0], 1, 1))

        return x_db


class STFT(torch.nn.Module):
    """computes the Short-Term Fourier Transform (STFT).
    This class computes the Short-Term Fourier Transform of an audio signal.
    It supports multi-channel audio inputs (batch, time, channels).
    Arguments
    ---------
    sample_rate : int
        Sample rate of the input audio signal (e.g 16000).
    win_length : float
        Length (in ms) of the sliding window used to compute the STFT.
    hop_length : float
        Length (in ms) of the hope of the sliding window used to compute
        the STFT.
    n_fft : int
        Number of fft point of the STFT. It defines the frequency resolution
        (n_fft should be <= than win_len).
    window_fn : function
        A function that takes an integer (number of samples) and outputs a
        tensor to be multiplied with each window before fft.
    normalized_stft : bool
        If True, the function returns the  normalized STFT results,
        i.e., multiplied by win_length^-0.5 (default is False).
    center : bool
        If True (default), the input will be padded on both sides so that the
        t-th frame is centered at time t×hop_length. Otherwise, the t-th frame
        begins at time t×hop_length.
    pad_mode : str
        It can be 'constant','reflect','replicate', 'circular', 'reflect'
        (default). 'constant' pads the input tensor boundaries with a
        constant value. 'reflect' pads the input tensor using the reflection
        of the input boundary. 'replicate' pads the input tensor using
        replication of the input boundary. 'circular' pads using  circular
        replication.
    onesided : True
        If True (default) only returns nfft/2 values. Note that the other
        samples are redundant due to the Fourier transform conjugate symmetry.
    Example
    -------
    >>> import torch
    >>> compute_STFT = STFT(
    ...     sample_rate=16000, win_length=25, hop_length=10, n_fft=400
    ... )
    >>> inputs = torch.randn([10, 16000])
    >>> features = compute_STFT(inputs)
    >>> features.shape
    torch.Size([10, 101, 201, 2])
    """

    def __init__(
        self,
        sample_rate,
        win_length=25,
        hop_length=10,
        n_fft=400,
        window_fn=torch.hamming_window,
        normalized_stft=False,
        center=True,
        pad_mode="constant",
        onesided=True,
    ):
        super().__init__()
        self.sample_rate = sample_rate
        self.win_length = win_length
        self.hop_length = hop_length
        self.n_fft = n_fft
        self.normalized_stft = normalized_stft
        self.center = center
        self.pad_mode = pad_mode
        self.onesided = onesided

        # Convert win_length and hop_length from ms to samples
        self.win_length = int(
            round((self.sample_rate / 1000.0) * self.win_length)
        )
        self.hop_length = int(
            round((self.sample_rate / 1000.0) * self.hop_length)
        )

        self.window = window_fn(self.win_length)

    def forward(self, x):
        """Returns the STFT generated from the input waveforms.
        Arguments
        ---------
        x : tensor
            A batch of audio signals to transform.
        """

        # Managing multi-channel stft
        or_shape = x.shape
        if len(or_shape) == 3:
            x = x.transpose(1, 2)
            x = x.reshape(or_shape[0] * or_shape[2], or_shape[1])

        stft = torch.stft(
            x,
            self.n_fft,
            self.hop_length,
            self.win_length,
            self.window.to(x.device),
            self.center,
            self.pad_mode,
            self.normalized_stft,
            self.onesided,
            return_complex=True,
        )

        stft = torch.view_as_real(stft)

        # Retrieving the original dimensionality (batch,time, channels)
        if len(or_shape) == 3:
            stft = stft.reshape(
                or_shape[0],
                or_shape[2],
                stft.shape[1],
                stft.shape[2],
                stft.shape[3],
            )
            stft = stft.permute(0, 3, 2, 4, 1)
        else:
            # (batch, time, channels)
            stft = stft.transpose(2, 1)

        return stft


def spectral_magnitude(
    stft, power: int = 1, log: bool = False, eps: float = 1e-14
):
    """Returns the magnitude of a complex spectrogram.
    Arguments
    ---------
    stft : torch.Tensor
        A tensor, output from the stft function.
    power : int
        What power to use in computing the magnitude.
        Use power=1 for the power spectrogram.
        Use power=0.5 for the magnitude spectrogram.
    log : bool
        Whether to apply log to the spectral features.
    Example
    -------
    >>> a = torch.Tensor([[3, 4]])
    >>> spectral_magnitude(a, power=0.5)
    tensor([5.])
    """
    spectr = stft.pow(2).sum(-1)

    # Add eps avoids NaN when spectr is zero
    if power < 1:
        spectr = spectr + eps
    spectr = spectr.pow(power)

    if log:
        return torch.log(spectr + eps)
    return spectr


class ContextWindow(torch.nn.Module):
    """Computes the context window.
    This class applies a context window by gathering multiple time steps
    in a single feature vector. The operation is performed with a
    convolutional layer based on a fixed kernel designed for that.
    Arguments
    ---------
    left_frames : int
         Number of left frames (i.e, past frames) to collect.
    right_frames : int
        Number of right frames (i.e, future frames) to collect.
    Example
    -------
    >>> import torch
    >>> compute_cw = ContextWindow(left_frames=5, right_frames=5)
    >>> inputs = torch.randn([10, 101, 20])
    >>> features = compute_cw(inputs)
    >>> features.shape
    torch.Size([10, 101, 220])
    """

    def __init__(
        self, left_frames=0, right_frames=0,
    ):
        super().__init__()
        self.left_frames = left_frames
        self.right_frames = right_frames
        self.context_len = self.left_frames + self.right_frames + 1
        self.kernel_len = 2 * max(self.left_frames, self.right_frames) + 1

        # Kernel definition
        self.kernel = torch.eye(self.context_len, self.kernel_len)

        if self.right_frames > self.left_frames:
            lag = self.right_frames - self.left_frames
            self.kernel = torch.roll(self.kernel, lag, 1)

        self.first_call = True

    def forward(self, x):
        """Returns the tensor with the surrounding context.
        Arguments
        ---------
        x : tensor
            A batch of tensors.
        """

        x = x.transpose(1, 2)

        if self.first_call is True:
            self.first_call = False
            self.kernel = (
                self.kernel.repeat(x.shape[1], 1, 1)
                .view(x.shape[1] * self.context_len, self.kernel_len,)
                .unsqueeze(1)
            )

        # Managing multi-channel case
        or_shape = x.shape
        if len(or_shape) == 4:
            x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])

        # Compute context (using the estimated convolutional kernel)
        cw_x = torch.nn.functional.conv1d(
            x,
            self.kernel.to(x.device),
            groups=x.shape[1],
            padding=max(self.left_frames, self.right_frames),
        )

        # Retrieving the original dimensionality (for multi-channel case)
        if len(or_shape) == 4:
            cw_x = cw_x.reshape(
                or_shape[0], cw_x.shape[1], or_shape[2], cw_x.shape[-1]
            )

        cw_x = cw_x.transpose(1, 2)

        return cw_x


class Fbank(torch.nn.Module):

    def __init__(
        self,
        deltas=False,
        context=False,
        requires_grad=False,
        sample_rate=16000,
        f_min=0,
        f_max=None,
        n_fft=400,
        n_mels=40,
        filter_shape="triangular",
        param_change_factor=1.0,
        param_rand_factor=0.0,
        left_frames=5,
        right_frames=5,
        win_length=25,
        hop_length=10,
    ):
        super().__init__()
        self.deltas = deltas
        self.context = context
        self.requires_grad = requires_grad

        if f_max is None:
            f_max = sample_rate / 2

        self.compute_STFT = STFT(
            sample_rate=sample_rate,
            n_fft=n_fft,
            win_length=win_length,
            hop_length=hop_length,
        )
        self.compute_fbanks = Filterbank(
            sample_rate=sample_rate,
            n_fft=n_fft,
            n_mels=n_mels,
            f_min=f_min,
            f_max=f_max,
            freeze=not requires_grad,
            filter_shape=filter_shape,
            param_change_factor=param_change_factor,
            param_rand_factor=param_rand_factor,
        )
        self.compute_deltas = Deltas(input_size=n_mels)
        self.context_window = ContextWindow(
            left_frames=left_frames, right_frames=right_frames,
        )

    def forward(self, wav):
        """Returns a set of features generated from the input waveforms.
        Arguments
        ---------
        wav : tensor
            A batch of audio signals to transform to features.
        """
        STFT = self.compute_STFT(wav)
        mag = spectral_magnitude(STFT)
        fbanks = self.compute_fbanks(mag)
        if self.deltas:
            delta1 = self.compute_deltas(fbanks)
            delta2 = self.compute_deltas(delta1)
            fbanks = torch.cat([fbanks, delta1, delta2], dim=2)
        if self.context:
            fbanks = self.context_window(fbanks)
        return fbanks