metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
What are the key components involved in developing a deep learning model
for handwritten digit recognition?
- text: What is the purpose of the message posted by the CR?
- text: >-
How can researchers create and maintain public repositories for
reproducible research?
- text: >-
What are the key components involved in developing a deep learning model
for handwritten digit recognition?
- text: >-
How do you prioritize and delegate tasks to ensure efficient collaboration
and feedback?
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5
name: Accuracy
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
lexical |
|
semantic |
|
very_semantic |
|
very_lexical |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yaniseuranova/setfit-rag-hybrid-search-query-router-test")
# Run inference
preds = model("What is the purpose of the message posted by the CR?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 8 | 14.4138 | 24 |
Label | Training Sample Count |
---|---|
lexical | 32 |
semantic | 21 |
very_lexical | 10 |
very_semantic | 24 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0015 | 1 | 0.268 | - |
0.0736 | 50 | 0.2649 | - |
0.1473 | 100 | 0.3352 | - |
0.2209 | 150 | 0.2516 | - |
0.2946 | 200 | 0.2438 | - |
0.3682 | 250 | 0.1808 | - |
0.4418 | 300 | 0.2365 | - |
0.5155 | 350 | 0.1337 | - |
0.5891 | 400 | 0.2263 | - |
0.6627 | 450 | 0.1936 | - |
0.7364 | 500 | 0.0612 | - |
0.8100 | 550 | 0.1664 | - |
0.8837 | 600 | 0.0987 | - |
0.9573 | 650 | 0.0736 | - |
1.0 | 679 | - | 0.2288 |
1.0309 | 700 | 0.0568 | - |
1.1046 | 750 | 0.0765 | - |
1.1782 | 800 | 0.1193 | - |
1.2518 | 850 | 0.199 | - |
1.3255 | 900 | 0.2734 | - |
1.3991 | 950 | 0.194 | - |
1.4728 | 1000 | 0.1085 | - |
1.5464 | 1050 | 0.1496 | - |
1.6200 | 1100 | 0.1673 | - |
1.6937 | 1150 | 0.2225 | - |
1.7673 | 1200 | 0.0503 | - |
1.8409 | 1250 | 0.1531 | - |
1.9146 | 1300 | 0.2287 | - |
1.9882 | 1350 | 0.1187 | - |
2.0 | 1358 | - | 0.2055 |
2.0619 | 1400 | 0.0546 | - |
2.1355 | 1450 | 0.2072 | - |
2.2091 | 1500 | 0.1208 | - |
2.2828 | 1550 | 0.0837 | - |
2.3564 | 1600 | 0.0405 | - |
2.4300 | 1650 | 0.1334 | - |
2.5037 | 1700 | 0.1458 | - |
2.5773 | 1750 | 0.2189 | - |
2.6510 | 1800 | 0.0561 | - |
2.7246 | 1850 | 0.1656 | - |
2.7982 | 1900 | 0.1351 | - |
2.8719 | 1950 | 0.1826 | - |
2.9455 | 2000 | 0.1905 | - |
3.0 | 2037 | - | 0.2273 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}