yaniseuranova commited on
Commit
03ae7a2
1 Parent(s): 5f4afd7

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: How does technology impact our daily lives and what benefits can it bring
14
+ to various activities?
15
+ - text: How do organizations effectively deploy and manage machine learning algorithms
16
+ to drive business value?
17
+ - text: What are the key considerations for organizing and managing computer lab resources
18
+ and tracking their status?
19
+ - text: How can batch processing improve the efficiency of data lake operations?
20
+ - text: What is the purpose of setting up a CUPS on a server?
21
+ inference: true
22
+ model-index:
23
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.8947368421052632
35
+ name: Accuracy
36
+ ---
37
+
38
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
39
+
40
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
+
42
+ The model has been trained using an efficient few-shot learning technique that involves:
43
+
44
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
45
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **Maximum Sequence Length:** 256 tokens
54
+ - **Number of Classes:** 2 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | lexical | <ul><li>"How does Happeo's search AI work to provide answers to user queries?"</li><li>'What are the primary areas of focus in the domain of Data Science and Analysis?'</li><li>'How can one organize a running event in Belgium?'</li></ul> |
69
+ | semantic | <ul><li>'What changes can be made to a channel header?'</li><li>'How can hardware capabilities impact the accuracy of motion and object detections?'</li><li>'Who is responsible for managing guarantees and prolongations?'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Accuracy |
75
+ |:--------|:---------|
76
+ | **all** | 0.8947 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("yaniseuranova/setfit-rag-hybrid-search-query-router-test")
95
+ # Run inference
96
+ preds = model("What is the purpose of setting up a CUPS on a server?")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 4 | 13.7407 | 28 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:---------|:----------------------|
132
+ | lexical | 44 |
133
+ | semantic | 118 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (8, 8)
137
+ - num_epochs: (1, 1)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: True
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:-------:|:--------:|:-------------:|:---------------:|
155
+ | 0.0005 | 1 | 0.431 | - |
156
+ | 0.0250 | 50 | 0.2596 | - |
157
+ | 0.0499 | 100 | 0.2718 | - |
158
+ | 0.0749 | 150 | 0.1733 | - |
159
+ | 0.0999 | 200 | 0.0706 | - |
160
+ | 0.1248 | 250 | 0.04 | - |
161
+ | 0.1498 | 300 | 0.003 | - |
162
+ | 0.1747 | 350 | 0.0008 | - |
163
+ | 0.1997 | 400 | 0.0004 | - |
164
+ | 0.2247 | 450 | 0.0004 | - |
165
+ | 0.2496 | 500 | 0.0021 | - |
166
+ | 0.2746 | 550 | 0.0004 | - |
167
+ | 0.2996 | 600 | 0.0006 | - |
168
+ | 0.3245 | 650 | 0.0002 | - |
169
+ | 0.3495 | 700 | 0.0008 | - |
170
+ | 0.3744 | 750 | 0.0003 | - |
171
+ | 0.3994 | 800 | 0.0003 | - |
172
+ | 0.4244 | 850 | 0.0002 | - |
173
+ | 0.4493 | 900 | 0.0003 | - |
174
+ | 0.4743 | 950 | 0.0002 | - |
175
+ | 0.4993 | 1000 | 0.0001 | - |
176
+ | 0.5242 | 1050 | 0.0001 | - |
177
+ | 0.5492 | 1100 | 0.0001 | - |
178
+ | 0.5741 | 1150 | 0.0001 | - |
179
+ | 0.5991 | 1200 | 0.0002 | - |
180
+ | 0.6241 | 1250 | 0.0005 | - |
181
+ | 0.6490 | 1300 | 0.0002 | - |
182
+ | 0.6740 | 1350 | 0.0002 | - |
183
+ | 0.6990 | 1400 | 0.0002 | - |
184
+ | 0.7239 | 1450 | 0.0001 | - |
185
+ | 0.7489 | 1500 | 0.0002 | - |
186
+ | 0.7738 | 1550 | 0.0001 | - |
187
+ | 0.7988 | 1600 | 0.0003 | - |
188
+ | 0.8238 | 1650 | 0.0002 | - |
189
+ | 0.8487 | 1700 | 0.0004 | - |
190
+ | 0.8737 | 1750 | 0.0002 | - |
191
+ | 0.8987 | 1800 | 0.0003 | - |
192
+ | 0.9236 | 1850 | 0.0001 | - |
193
+ | 0.9486 | 1900 | 0.0001 | - |
194
+ | 0.9735 | 1950 | 0.0001 | - |
195
+ | 0.9985 | 2000 | 0.0001 | - |
196
+ | **1.0** | **2003** | **-** | **0.1757** |
197
+
198
+ * The bold row denotes the saved checkpoint.
199
+ ### Framework Versions
200
+ - Python: 3.10.12
201
+ - SetFit: 1.0.3
202
+ - Sentence Transformers: 2.6.1
203
+ - Transformers: 4.39.0
204
+ - PyTorch: 2.3.1+cu121
205
+ - Datasets: 2.18.0
206
+ - Tokenizers: 0.15.2
207
+
208
+ ## Citation
209
+
210
+ ### BibTeX
211
+ ```bibtex
212
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
213
+ doi = {10.48550/ARXIV.2209.11055},
214
+ url = {https://arxiv.org/abs/2209.11055},
215
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
216
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
217
+ title = {Efficient Few-Shot Learning Without Prompts},
218
+ publisher = {arXiv},
219
+ year = {2022},
220
+ copyright = {Creative Commons Attribution 4.0 International}
221
+ }
222
+ ```
223
+
224
+ <!--
225
+ ## Glossary
226
+
227
+ *Clearly define terms in order to be accessible across audiences.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Authors
232
+
233
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Contact
238
+
239
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
240
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_2003",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "lexical",
4
+ "semantic"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b90d001c504859e63c5345e451800a56c6274cb3bab0ebae4eb006771e7c51b4
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9e4d74f361d24cf740f9e115a0c437a7fbe436892b1bde1338d09660e1f961
3
+ size 3983
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff