--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: What are the key components involved in developing a deep learning model for handwritten digit recognition? - text: What is the purpose of the message posted by the CR? - text: How can researchers create and maintain public repositories for reproducible research? - text: What are the key components involved in developing a deep learning model for handwritten digit recognition? - text: How do you prioritize and delegate tasks to ensure efficient collaboration and feedback? inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | lexical | | | semantic | | | very_semantic | | | very_lexical | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.5 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("yaniseuranova/setfit-rag-hybrid-search-query-router-test") # Run inference preds = model("What is the purpose of the message posted by the CR?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 8 | 14.4138 | 24 | | Label | Training Sample Count | |:--------------|:----------------------| | lexical | 32 | | semantic | 21 | | very_lexical | 10 | | very_semantic | 24 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0015 | 1 | 0.268 | - | | 0.0736 | 50 | 0.2649 | - | | 0.1473 | 100 | 0.3352 | - | | 0.2209 | 150 | 0.2516 | - | | 0.2946 | 200 | 0.2438 | - | | 0.3682 | 250 | 0.1808 | - | | 0.4418 | 300 | 0.2365 | - | | 0.5155 | 350 | 0.1337 | - | | 0.5891 | 400 | 0.2263 | - | | 0.6627 | 450 | 0.1936 | - | | 0.7364 | 500 | 0.0612 | - | | 0.8100 | 550 | 0.1664 | - | | 0.8837 | 600 | 0.0987 | - | | 0.9573 | 650 | 0.0736 | - | | 1.0 | 679 | - | 0.2288 | | 1.0309 | 700 | 0.0568 | - | | 1.1046 | 750 | 0.0765 | - | | 1.1782 | 800 | 0.1193 | - | | 1.2518 | 850 | 0.199 | - | | 1.3255 | 900 | 0.2734 | - | | 1.3991 | 950 | 0.194 | - | | 1.4728 | 1000 | 0.1085 | - | | 1.5464 | 1050 | 0.1496 | - | | 1.6200 | 1100 | 0.1673 | - | | 1.6937 | 1150 | 0.2225 | - | | 1.7673 | 1200 | 0.0503 | - | | 1.8409 | 1250 | 0.1531 | - | | 1.9146 | 1300 | 0.2287 | - | | 1.9882 | 1350 | 0.1187 | - | | **2.0** | **1358** | **-** | **0.2055** | | 2.0619 | 1400 | 0.0546 | - | | 2.1355 | 1450 | 0.2072 | - | | 2.2091 | 1500 | 0.1208 | - | | 2.2828 | 1550 | 0.0837 | - | | 2.3564 | 1600 | 0.0405 | - | | 2.4300 | 1650 | 0.1334 | - | | 2.5037 | 1700 | 0.1458 | - | | 2.5773 | 1750 | 0.2189 | - | | 2.6510 | 1800 | 0.0561 | - | | 2.7246 | 1850 | 0.1656 | - | | 2.7982 | 1900 | 0.1351 | - | | 2.8719 | 1950 | 0.1826 | - | | 2.9455 | 2000 | 0.1905 | - | | 3.0 | 2037 | - | 0.2273 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.6.1 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```