---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: What are the key situations that require the preparation of a mission order?
- text: How can audio data be used to improve speaker identification using neural
networks?
- text: How can organizations balance the need for data privacy with the benefits
of involving interns in data-related projects?
- text: What is the purpose of the message posted by the CR?
- text: What are the consequences of adopting a 'if not broken, don't fix' attitude
towards data monitoring?
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.3076923076923077
name: Accuracy
---
# SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 4 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| very_semantic |
- 'What are the key considerations when proposing names for a project or initiative?'
- 'What are the key aspects of team life and events in a company?'
- 'What is being asked for or sought in this conversation?'
|
| lexical | - 'Who is responsible for reviewing and signing documents related to conference submissions?'
- 'How do data architecture and management systems enable digital transformation and address its associated challenges?'
- 'How do keys or access credentials get shared or transferred among team members in a workplace?'
|
| very_lexical | - 'What are some of the key challenges associated with handling and storing large amounts of genomic data?'
- "What is the focus of Eurobiomed's partnership with Digital113?"
- 'What are the key considerations for generating well-formatted JSON instances that conform to a given schema?'
|
| semantic | - 'How can visualizations be used to enhance documentation and collaboration in software development?'
- 'What are the key considerations when choosing a distance metric for a vector database?'
- 'How can AI be leveraged to support HR departments in detecting and addressing gender bias?'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.3077 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yaniseuranova/setfit-rag-hybrid-search-query-router-test")
# Run inference
preds = model("What is the purpose of the message posted by the CR?")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 14.1913 | 24 |
| Label | Training Sample Count |
|:--------------|:----------------------|
| lexical | 41 |
| semantic | 24 |
| very_lexical | 17 |
| very_semantic | 33 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.4237 | - |
| 0.0417 | 50 | 0.2917 | - |
| 0.0834 | 100 | 0.1835 | - |
| 0.1251 | 150 | 0.3215 | - |
| 0.1668 | 200 | 0.2299 | - |
| 0.2085 | 250 | 0.2595 | - |
| 0.2502 | 300 | 0.3193 | - |
| 0.2919 | 350 | 0.2288 | - |
| 0.3336 | 400 | 0.2947 | - |
| 0.3753 | 450 | 0.1171 | - |
| 0.4170 | 500 | 0.1442 | - |
| 0.4587 | 550 | 0.1859 | - |
| 0.5004 | 600 | 0.1959 | - |
| 0.5421 | 650 | 0.2797 | - |
| 0.5838 | 700 | 0.2079 | - |
| 0.6255 | 750 | 0.2706 | - |
| 0.6672 | 800 | 0.1956 | - |
| 0.7089 | 850 | 0.0833 | - |
| 0.7506 | 900 | 0.1421 | - |
| 0.7923 | 950 | 0.2345 | - |
| 0.8340 | 1000 | 0.1347 | - |
| 0.8757 | 1050 | 0.241 | - |
| 0.9174 | 1100 | 0.133 | - |
| 0.9591 | 1150 | 0.1041 | - |
| **1.0** | **1199** | **-** | **0.3562** |
| 1.0008 | 1200 | 0.0837 | - |
| 1.0425 | 1250 | 0.1566 | - |
| 1.0842 | 1300 | 0.2101 | - |
| 1.1259 | 1350 | 0.0496 | - |
| 1.1676 | 1400 | 0.063 | - |
| 1.2093 | 1450 | 0.149 | - |
| 1.2510 | 1500 | 0.038 | - |
| 1.2927 | 1550 | 0.0504 | - |
| 1.3344 | 1600 | 0.0679 | - |
| 1.3761 | 1650 | 0.1699 | - |
| 1.4178 | 1700 | 0.1293 | - |
| 1.4595 | 1750 | 0.1083 | - |
| 1.5013 | 1800 | 0.2044 | - |
| 1.5430 | 1850 | 0.1267 | - |
| 1.5847 | 1900 | 0.0842 | - |
| 1.6264 | 1950 | 0.1126 | - |
| 1.6681 | 2000 | 0.0544 | - |
| 1.7098 | 2050 | 0.143 | - |
| 1.7515 | 2100 | 0.08 | - |
| 1.7932 | 2150 | 0.1103 | - |
| 1.8349 | 2200 | 0.1768 | - |
| 1.8766 | 2250 | 0.1639 | - |
| 1.9183 | 2300 | 0.1637 | - |
| 1.9600 | 2350 | 0.1637 | - |
| 2.0 | 2398 | - | 0.3682 |
| 2.0017 | 2400 | 0.2938 | - |
| 2.0434 | 2450 | 0.0808 | - |
| 2.0851 | 2500 | 0.0788 | - |
| 2.1268 | 2550 | 0.2187 | - |
| 2.1685 | 2600 | 0.0701 | - |
| 2.2102 | 2650 | 0.0385 | - |
| 2.2519 | 2700 | 0.135 | - |
| 2.2936 | 2750 | 0.2276 | - |
| 2.3353 | 2800 | 0.2203 | - |
| 2.3770 | 2850 | 0.0029 | - |
| 2.4187 | 2900 | 0.1855 | - |
| 2.4604 | 2950 | 0.1278 | - |
| 2.5021 | 3000 | 0.0487 | - |
| 2.5438 | 3050 | 0.0404 | - |
| 2.5855 | 3100 | 0.1158 | - |
| 2.6272 | 3150 | 0.1354 | - |
| 2.6689 | 3200 | 0.1633 | - |
| 2.7106 | 3250 | 0.1484 | - |
| 2.7523 | 3300 | 0.1146 | - |
| 2.7940 | 3350 | 0.1437 | - |
| 2.8357 | 3400 | 0.0948 | - |
| 2.8774 | 3450 | 0.0833 | - |
| 2.9191 | 3500 | 0.0668 | - |
| 2.9608 | 3550 | 0.1687 | - |
| 3.0 | 3597 | - | 0.3651 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```