File size: 7,529 Bytes
681c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
# Set environment variables before imports
os.environ['FI_PROVIDER'] = 'tcp'
os.environ['CCL_ATL_TRANSPORT'] = 'ofi'

from transformers import DataCollatorForLanguageModeling, LlamaForCausalLM, AutoTokenizer, AutoConfig
from datasets import load_dataset
from torch.optim import AdamW  # Import AdamW from PyTorch
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import intel_extension_for_pytorch as ipex
import oneccl_bindings_for_pytorch
import os
import torch.multiprocessing as mp
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm

# Set default values for RANK, WORLD_SIZE, MASTER_ADDR, and MASTER_PORT if not provided
os.environ.setdefault('RANK', '0')
os.environ.setdefault('WORLD_SIZE', '1')
os.environ.setdefault('MASTER_ADDR', 'localhost')
os.environ.setdefault('MASTER_PORT', '29500')

# Define model_name and tokenizer before 'train_model'
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token

def setup(rank, world_size):
    os.environ['RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend='ccl')
    
def cleanup():
    dist.destroy_process_group()

def train_model(rank, world_size):
    setup(rank, world_size)
    device = torch.device(f'xpu:{rank}')
    torch.xpu.set_device(device)
    
    # Initialize model and move to device
    config = AutoConfig.from_pretrained(model_name)
    
    # Core dimensions (kept as required)
    config.hidden_size = 768
    config.intermediate_size = 3072

    # Reduce model complexity
    config.num_hidden_layers = 16#40  # Halved from 16
    config.num_attention_heads = 12  # Must divide hidden_size (768/12=64)
    config.num_key_value_heads = 6  # Match attention heads
    config.head_dim = config.hidden_size // config.num_attention_heads

    # Reduce memory footprint
    config.max_position_embeddings = 8196
    #config.vocab_size = 32000

    # Optimize other parameters
    config.rope_theta = 10000.0
    config.initializer_range = 0.02
    config.rms_norm_eps = 1e-6
    config.attention_dropout = 0.1

    # Token IDs
    config.bos_token_id = 31998
    config.eos_token_id = 31999
    config.pad_token_id = 0

    # Simplified rope scaling
    config.rope_scaling = {
        "type": "linear",
        "factor": 1.0
    }

    # Keep essential settings
    config.tie_word_embeddings = True
    config.torch_dtype = "bfloat16"

    model = LlamaForCausalLM(config).to(device, dtype=torch.bfloat16)
    
    # Wrap model with DDP after moving to device
    model = DDP(model, device_ids=[rank])
    
    # Load and tokenize dataset inside 'train_model'
    dataset = load_dataset("wikimedia/wikipedia", "20231101.en", split="train", cache_dir="./").shuffle(seed=42)

    if rank == 0:
        # Print all column names
        print(dataset.column_names)

    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=1024)

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        remove_columns=['id', 'url', 'title', 'text'],
        num_proc=24  # Reduce the number of processes
    )

    # Data collator for language modeling
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False,
        return_tensors="pt"
    )

    # Prepare DataLoader with distributed sampler
    train_sampler = DistributedSampler(
        tokenized_datasets,
        num_replicas=world_size,
        rank=rank,
        shuffle=True,
        seed=42
    )
    train_dataloader = DataLoader(
        tokenized_datasets,
        batch_size=8,
        sampler=train_sampler,
        collate_fn=data_collator,
        num_workers=2,  # Set num_workers to 0
        # prefetch_factor=8,
        persistent_workers=True,
        pin_memory=True,
    )

    if rank == 0:
        # Check the number of parameters in the model
        num_params = model.module.num_parameters() / 1e6
        print(f"The model has {num_params:.2f}M parameters.")

    # Initialize optimizer
    optimizer = AdamW(model.parameters(), lr=3e-5, weight_decay=0.01)

    # Training loop
    # Training loop
    model.train()
    num_epochs = 40
    step = 0
    running_loss = 0
    logging_steps = 500  # Adjust as needed

    for epoch in range(num_epochs):
        train_sampler.set_epoch(epoch)
        epoch_iterator = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{num_epochs}", 
                            position=0, leave=True, disable=rank != 0)
        
        epoch_loss = 0
        num_batches = 0
        
        for batch in epoch_iterator:
            optimizer.zero_grad()
            
            # Move batch to device
            input_ids = batch['input_ids'].to(device, dtype=torch.long)
            attention_mask = batch['attention_mask'].to(device, dtype=torch.bfloat16)

            # Forward pass
            outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
            loss = outputs.loss

            # Backward pass
            loss.backward()
            
            # Gradient clipping (optional but recommended)
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
            
            optimizer.step()

            # Aggregate loss across processes
            if world_size > 1:
                dist.all_reduce(loss, op=dist.ReduceOp.SUM)
                loss = loss / world_size

            # Update metrics
            if rank == 0:
                running_loss = 0.98 * running_loss + 0.02 * loss.item() if step > 0 else loss.item()
                epoch_loss += loss.item()
                num_batches += 1
                
                # Update progress bar
                epoch_iterator.set_postfix({
                    'loss': f'{running_loss:.4f}',
                    'batch_loss': f'{loss.item():.4f}'
                })
                
                # Detailed logging every N steps
                if step % logging_steps == 0:
                    print(f"\nStep {step}")
                    print(f"Running loss: {running_loss:.4f}")
                    print(f"Batch loss: {loss.item():.4f}")
                    print(f"Average epoch loss: {epoch_loss/num_batches:.4f}")

            step += 1

        # End of epoch reporting
        if rank == 0:
            avg_epoch_loss = epoch_loss / num_batches
            print(f"\nEpoch {epoch+1} completed.")
            print(f"Average epoch loss: {avg_epoch_loss:.4f}")

        # Save checkpoint
        if rank == 0:
            checkpoint = {
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': avg_epoch_loss,
            }
            model.module.save_pretrained(f"fine-tuned-llama-8192-{epoch+1}-{step}")
            tokenizer.save_pretrained(f"fine-tuned-llama-8192-{epoch+1}-{step}")
            torch.save(checkpoint, f"fine-tuned-llama-8192-{epoch+1}-{step}/model.pt")


    cleanup()

if __name__ == "__main__":
    world_size = 16  # Number of XPUs
    mp.spawn(
        train_model,
        args=(world_size,),
        nprocs=world_size,
        join=True
    )