File size: 7,529 Bytes
681c4e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
# Set environment variables before imports
os.environ['FI_PROVIDER'] = 'tcp'
os.environ['CCL_ATL_TRANSPORT'] = 'ofi'
from transformers import DataCollatorForLanguageModeling, LlamaForCausalLM, AutoTokenizer, AutoConfig
from datasets import load_dataset
from torch.optim import AdamW # Import AdamW from PyTorch
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import intel_extension_for_pytorch as ipex
import oneccl_bindings_for_pytorch
import os
import torch.multiprocessing as mp
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm
# Set default values for RANK, WORLD_SIZE, MASTER_ADDR, and MASTER_PORT if not provided
os.environ.setdefault('RANK', '0')
os.environ.setdefault('WORLD_SIZE', '1')
os.environ.setdefault('MASTER_ADDR', 'localhost')
os.environ.setdefault('MASTER_PORT', '29500')
# Define model_name and tokenizer before 'train_model'
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
def setup(rank, world_size):
os.environ['RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(backend='ccl')
def cleanup():
dist.destroy_process_group()
def train_model(rank, world_size):
setup(rank, world_size)
device = torch.device(f'xpu:{rank}')
torch.xpu.set_device(device)
# Initialize model and move to device
config = AutoConfig.from_pretrained(model_name)
# Core dimensions (kept as required)
config.hidden_size = 768
config.intermediate_size = 3072
# Reduce model complexity
config.num_hidden_layers = 16#40 # Halved from 16
config.num_attention_heads = 12 # Must divide hidden_size (768/12=64)
config.num_key_value_heads = 6 # Match attention heads
config.head_dim = config.hidden_size // config.num_attention_heads
# Reduce memory footprint
config.max_position_embeddings = 8196
#config.vocab_size = 32000
# Optimize other parameters
config.rope_theta = 10000.0
config.initializer_range = 0.02
config.rms_norm_eps = 1e-6
config.attention_dropout = 0.1
# Token IDs
config.bos_token_id = 31998
config.eos_token_id = 31999
config.pad_token_id = 0
# Simplified rope scaling
config.rope_scaling = {
"type": "linear",
"factor": 1.0
}
# Keep essential settings
config.tie_word_embeddings = True
config.torch_dtype = "bfloat16"
model = LlamaForCausalLM(config).to(device, dtype=torch.bfloat16)
# Wrap model with DDP after moving to device
model = DDP(model, device_ids=[rank])
# Load and tokenize dataset inside 'train_model'
dataset = load_dataset("wikimedia/wikipedia", "20231101.en", split="train", cache_dir="./").shuffle(seed=42)
if rank == 0:
# Print all column names
print(dataset.column_names)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=1024)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
remove_columns=['id', 'url', 'title', 'text'],
num_proc=24 # Reduce the number of processes
)
# Data collator for language modeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
return_tensors="pt"
)
# Prepare DataLoader with distributed sampler
train_sampler = DistributedSampler(
tokenized_datasets,
num_replicas=world_size,
rank=rank,
shuffle=True,
seed=42
)
train_dataloader = DataLoader(
tokenized_datasets,
batch_size=8,
sampler=train_sampler,
collate_fn=data_collator,
num_workers=2, # Set num_workers to 0
# prefetch_factor=8,
persistent_workers=True,
pin_memory=True,
)
if rank == 0:
# Check the number of parameters in the model
num_params = model.module.num_parameters() / 1e6
print(f"The model has {num_params:.2f}M parameters.")
# Initialize optimizer
optimizer = AdamW(model.parameters(), lr=3e-5, weight_decay=0.01)
# Training loop
# Training loop
model.train()
num_epochs = 40
step = 0
running_loss = 0
logging_steps = 500 # Adjust as needed
for epoch in range(num_epochs):
train_sampler.set_epoch(epoch)
epoch_iterator = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{num_epochs}",
position=0, leave=True, disable=rank != 0)
epoch_loss = 0
num_batches = 0
for batch in epoch_iterator:
optimizer.zero_grad()
# Move batch to device
input_ids = batch['input_ids'].to(device, dtype=torch.long)
attention_mask = batch['attention_mask'].to(device, dtype=torch.bfloat16)
# Forward pass
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
loss = outputs.loss
# Backward pass
loss.backward()
# Gradient clipping (optional but recommended)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
# Aggregate loss across processes
if world_size > 1:
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
loss = loss / world_size
# Update metrics
if rank == 0:
running_loss = 0.98 * running_loss + 0.02 * loss.item() if step > 0 else loss.item()
epoch_loss += loss.item()
num_batches += 1
# Update progress bar
epoch_iterator.set_postfix({
'loss': f'{running_loss:.4f}',
'batch_loss': f'{loss.item():.4f}'
})
# Detailed logging every N steps
if step % logging_steps == 0:
print(f"\nStep {step}")
print(f"Running loss: {running_loss:.4f}")
print(f"Batch loss: {loss.item():.4f}")
print(f"Average epoch loss: {epoch_loss/num_batches:.4f}")
step += 1
# End of epoch reporting
if rank == 0:
avg_epoch_loss = epoch_loss / num_batches
print(f"\nEpoch {epoch+1} completed.")
print(f"Average epoch loss: {avg_epoch_loss:.4f}")
# Save checkpoint
if rank == 0:
checkpoint = {
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': avg_epoch_loss,
}
model.module.save_pretrained(f"fine-tuned-llama-8192-{epoch+1}-{step}")
tokenizer.save_pretrained(f"fine-tuned-llama-8192-{epoch+1}-{step}")
torch.save(checkpoint, f"fine-tuned-llama-8192-{epoch+1}-{step}/model.pt")
cleanup()
if __name__ == "__main__":
world_size = 16 # Number of XPUs
mp.spawn(
train_model,
args=(world_size,),
nprocs=world_size,
join=True
) |