File size: 1,317 Bytes
d57c446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
tags: autonlp
language: ko
widget:
- text: "I love AutoNLP 🤗"
datasets:
- ybybybybybybyb/autonlp-data-revanalysis
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 6711455
## Validation Metrics
- Loss: 0.8241586089134216
- Accuracy: 0.7835820895522388
- Macro F1: 0.5297383029341792
- Micro F1: 0.783582089552239
- Weighted F1: 0.7130091019920225
- Macro Precision: 0.48787061994609165
- Micro Precision: 0.7835820895522388
- Weighted Precision: 0.6541416904694856
- Macro Recall: 0.5795454545454546
- Micro Recall: 0.7835820895522388
- Weighted Recall: 0.7835820895522388
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/ybybybybybybyb/autonlp-revanalysis-6711455
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |