Update README.md
Browse files
README.md
CHANGED
@@ -30,7 +30,52 @@ Then you can load the model using
|
|
30 |
import torch
|
31 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
34 |
-
model = AutoModelForCausalLM.from_pretrained("HiTZ/GoLLIE-7B", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
35 |
model.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
```
|
|
|
30 |
import torch
|
31 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("ychenNLP/GoLLIE-7B-TF")
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("HiTZ/GoLLIE-7B-TF", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
35 |
model.to("cuda")
|
36 |
+
|
37 |
+
test_input = r'''# The following lines describe the task definition
|
38 |
+
@dataclass
|
39 |
+
class LLM(Entity):
|
40 |
+
"""Large language model names or model names. This is used for deep learning and NLP tasks."""
|
41 |
+
|
42 |
+
span: str # Such as: "GPT-3.5", "LLama=7B", "ChatGPT"
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class Hyperparams(Entity):
|
46 |
+
"""Hyperparameter used for training large language models. Including learning rate, scheduler, architecture"""
|
47 |
+
|
48 |
+
span: str # Such as: "layernorm", "cosine scheduler"
|
49 |
+
|
50 |
+
# This is the text to analyze
|
51 |
+
text = "GoLLIE-7B-TFが本日リリースされました! 1つのNVIDIA A100 GPUで推論が可能なサイズです 学習率は1e-4です 訓練にはLoRAが使用されています"
|
52 |
+
|
53 |
+
# This is the English translation of the text
|
54 |
+
eng_text = "GoLLIE-7B-TF is released today! * Sized for inference on 1 NVIDIA A100 GPUs * learning rate 1e-4 * LoRA is used for training"
|
55 |
+
|
56 |
+
# Using translation and fusion
|
57 |
+
# (1) generate annotation for eng_text
|
58 |
+
# (2) generate annotation for text
|
59 |
+
|
60 |
+
# The annotation instances that take place in the eng_text above are listed here
|
61 |
+
result = [
|
62 |
+
'''
|
63 |
+
|
64 |
+
model_input = tokenizer(test_input, return_tensors="pt")
|
65 |
+
|
66 |
+
print(model_input["input_ids"])
|
67 |
+
|
68 |
+
model_input["input_ids"] = model_input["input_ids"][:, :-1]
|
69 |
+
model_input["attention_mask"] = model_input["attention_mask"][:, :-1]
|
70 |
+
|
71 |
+
model_ouput = model.generate(
|
72 |
+
**model_input.to(model.device),
|
73 |
+
max_new_tokens=128,
|
74 |
+
do_sample=False,
|
75 |
+
min_new_tokens=0,
|
76 |
+
num_beams=1,
|
77 |
+
num_return_sequences=1,
|
78 |
+
)
|
79 |
+
print(tokenizer.batch_decode(model_ouput))
|
80 |
+
|
81 |
```
|