update model card README.md
Browse files
README.md
CHANGED
@@ -12,14 +12,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-pokemon
|
14 |
|
15 |
-
This model is a fine-tuned version of [
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean
|
19 |
-
- Mean
|
20 |
-
- Overall Accuracy: 0.
|
21 |
-
- Per Category
|
22 |
-
- Per Category
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,23 +44,18 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean
|
52 |
-
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.0281 | 46.0 | 1334 | 0.0300 | 0.4969 | 0.9939 | 0.9939 | [0.0, 0.9938931511561724] | [nan, 0.9938931511561724] |
|
60 |
-
| 0.0273 | 47.0 | 1363 | 0.0297 | 0.4968 | 0.9936 | 0.9936 | [0.0, 0.993593207587916] | [nan, 0.993593207587916] |
|
61 |
-
| 0.0291 | 48.0 | 1392 | 0.0297 | 0.4970 | 0.9941 | 0.9941 | [0.0, 0.9940591430922732] | [nan, 0.9940591430922732] |
|
62 |
-
| 0.0269 | 49.0 | 1421 | 0.0294 | 0.4968 | 0.9936 | 0.9936 | [0.0, 0.9936409647363091] | [nan, 0.9936409647363091] |
|
63 |
-
| 0.0279 | 50.0 | 1450 | 0.0298 | 0.4971 | 0.9941 | 0.9941 | [0.0, 0.99410193702663] | [nan, 0.99410193702663] |
|
64 |
|
65 |
|
66 |
### Framework versions
|
|
|
12 |
|
13 |
# segformer-b0-finetuned-pokemon
|
14 |
|
15 |
+
This model is a fine-tuned version of [ydmeira/segformer-b0-finetuned-pokemon](https://huggingface.co/ydmeira/segformer-b0-finetuned-pokemon) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0225
|
18 |
+
- Mean Accuracy: 0.9927
|
19 |
+
- Mean Iou: 0.4964
|
20 |
+
- Overall Accuracy: 0.9927
|
21 |
+
- Per Category Accuracy: [nan, 0.9927247002783977]
|
22 |
+
- Per Category Iou: [0.0, 0.9927247002783977]
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 20
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy | Per Category Accuracy | Per Category Iou |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:--------:|:----------------:|:-------------------------:|:-------------------------:|
|
53 |
+
| 0.0217 | 15.0 | 435 | 0.0228 | 0.9944 | 0.4972 | 0.9944 | [nan, 0.9944285716570368] | [0.0, 0.9944285716570368] |
|
54 |
+
| 0.0228 | 16.0 | 464 | 0.0227 | 0.9943 | 0.4971 | 0.9943 | [nan, 0.9942943994375907] | [0.0, 0.9942943994375907] |
|
55 |
+
| 0.0204 | 17.0 | 493 | 0.0226 | 0.9933 | 0.4967 | 0.9933 | [nan, 0.9933366094222428] | [0.0, 0.9933366094222428] |
|
56 |
+
| 0.0202 | 18.0 | 522 | 0.0226 | 0.9929 | 0.4964 | 0.9929 | [nan, 0.9928635048309444] | [0.0, 0.9928635048309444] |
|
57 |
+
| 0.021 | 19.0 | 551 | 0.0226 | 0.9924 | 0.4962 | 0.9924 | [nan, 0.9924163192462797] | [0.0, 0.9924163192462797] |
|
58 |
+
| 0.0203 | 20.0 | 580 | 0.0225 | 0.9927 | 0.4964 | 0.9927 | [nan, 0.9927247002783977] | [0.0, 0.9927247002783977] |
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
### Framework versions
|