|
import os |
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import jax |
|
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel, VisionEncoderDecoderModel |
|
import torch |
|
|
|
|
|
class PreTrainedPipeline(): |
|
|
|
def __init__(self, path=""): |
|
|
|
model_dir = path |
|
|
|
|
|
self.model = VisionEncoderDecoderModel.from_pretrained(model_dir) |
|
self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
|
|
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True} |
|
|
|
self.model.to("cpu") |
|
self.model.eval() |
|
|
|
|
|
def _generate(pixel_values): |
|
|
|
with torch.no_grad(): |
|
|
|
outputs = self.model.generate(pixel_values, **self.gen_kwargs) |
|
output_ids = outputs.sequences |
|
sequences_scores = outputs.sequences_scores |
|
|
|
return output_ids, sequences_scores |
|
|
|
self.generate = _generate |
|
|
|
|
|
image_path = os.path.join(path, 'val_000000039769.jpg') |
|
image = Image.open(image_path) |
|
self(image) |
|
image.close() |
|
|
|
def __call__(self, inputs: "Image.Image") -> List[str]: |
|
""" |
|
Args: |
|
Return: |
|
""" |
|
|
|
|
|
pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values |
|
|
|
output_ids, sequences_scores = self.generate(pixel_values) |
|
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
|
|
preds = [{"label": preds[0], "score": float(sequences_scores[0])}] |
|
|
|
return preds |
|
|