bodhitrii
commited on
Commit
·
376e557
0
Parent(s):
Initial commit
Browse files- .gitattributes +35 -0
- README.md +3 -0
- codeparrot_training.py +197 -0
- config.json +41 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- requirements.txt +7 -0
- runs/Aug27_13-51-10_desktop2.xfact.net/1724734270.8848336/events.out.tfevents.1724734270.desktop2.xfact.net.283940.1 +3 -0
- runs/Aug27_13-51-10_desktop2.xfact.net/events.out.tfevents.1724734270.desktop2.xfact.net.283940.0 +3 -0
- runs/Sep20_14-28-12_leandro-16x-v100/1632148092.8874874/events.out.tfevents.1632148092.leandro-16x-v100.8660.1 +3 -0
- runs/Sep20_14-28-12_leandro-16x-v100/events.out.tfevents.1632148092.leandro-16x-v100.8660.0 +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
- wandb/debug-cli.yejin.log +0 -0
- wandb/debug-internal.log +1 -0
- wandb/debug.log +1 -0
- wandb/latest-run +1 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# CodeParrot
|
2 |
+
|
3 |
+
CodeParrot (large) is a 1.5B parameter GPT-2 model trained on the [CodeParrot Python code dataset](https://huggingface.co/datasets/transformersbook/codeparrot). The model is trained in Chapter 10: Training Transformers from Scratch in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/10_transformers-from-scratch.ipynb).
|
codeparrot_training.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, AutoTokenizer
|
2 |
+
from transformers import AdamW, get_scheduler, set_seed
|
3 |
+
from datasets import load_dataset
|
4 |
+
from accelerate import Accelerator
|
5 |
+
import datasets, transformers
|
6 |
+
from huggingface_hub import Repository
|
7 |
+
|
8 |
+
from torch.utils.data import IterableDataset
|
9 |
+
from torch.utils.data.dataloader import DataLoader
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
from argparse import Namespace
|
12 |
+
import torch
|
13 |
+
import logging
|
14 |
+
import wandb
|
15 |
+
|
16 |
+
class ConstantLengthDataset(IterableDataset):
|
17 |
+
|
18 |
+
def __init__(self, tokenizer, dataset, seq_length=1024,
|
19 |
+
num_of_sequences=1024, chars_per_token=3.6):
|
20 |
+
self.tokenizer = tokenizer
|
21 |
+
self.concat_token_id = tokenizer.bos_token_id
|
22 |
+
self.dataset = dataset
|
23 |
+
self.seq_length = seq_length
|
24 |
+
self.input_characters = seq_length * chars_per_token * num_of_sequences
|
25 |
+
|
26 |
+
def __iter__(self):
|
27 |
+
iterator = iter(self.dataset)
|
28 |
+
more_examples = True
|
29 |
+
while more_examples:
|
30 |
+
buffer, buffer_len = [], 0
|
31 |
+
while True:
|
32 |
+
if buffer_len >= self.input_characters:
|
33 |
+
break
|
34 |
+
try:
|
35 |
+
buffer.append(next(iterator)['content'])
|
36 |
+
buffer_len += len(buffer[-1])
|
37 |
+
except StopIteration:
|
38 |
+
more_examples = False
|
39 |
+
break
|
40 |
+
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
|
41 |
+
all_token_ids = []
|
42 |
+
for tokenized_input in tokenized_inputs:
|
43 |
+
all_token_ids.extend(tokenized_input + [self.concat_token_id])
|
44 |
+
for i in range(0, len(all_token_ids), self.seq_length):
|
45 |
+
input_ids = all_token_ids[i : i + self.seq_length]
|
46 |
+
if len(input_ids) == self.seq_length:
|
47 |
+
yield torch.tensor(input_ids)
|
48 |
+
|
49 |
+
def setup_logging(project_name):
|
50 |
+
logger = logging.getLogger(__name__)
|
51 |
+
logging.basicConfig(
|
52 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
53 |
+
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
|
54 |
+
logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
|
55 |
+
logging.StreamHandler()])
|
56 |
+
if accelerator.is_main_process: # we only want to setup logging once
|
57 |
+
wandb.init(project=project_name, config=args)
|
58 |
+
run_name = wandb.run.name
|
59 |
+
tb_writer = SummaryWriter()
|
60 |
+
tb_writer.add_hparams(vars(args), {'0': 0})
|
61 |
+
logger.setLevel(logging.INFO)
|
62 |
+
datasets.utils.logging.set_verbosity_info()
|
63 |
+
transformers.utils.logging.set_verbosity_info()
|
64 |
+
else:
|
65 |
+
tb_writer = None
|
66 |
+
run_name = ''
|
67 |
+
logger.setLevel(logging.ERROR)
|
68 |
+
datasets.utils.logging.set_verbosity_error()
|
69 |
+
transformers.utils.logging.set_verbosity_error()
|
70 |
+
return logger, tb_writer, run_name
|
71 |
+
|
72 |
+
def create_dataloaders(dataset_name, args):
|
73 |
+
ds_kwargs = {"streaming":True, "chunksize":40<<20, "error_bad_chunk":False}
|
74 |
+
train_data = load_dataset(dataset_name+'-train', split='train', **ds_kwargs)
|
75 |
+
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
|
76 |
+
seed=args.seed)
|
77 |
+
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
|
78 |
+
train_dataset = ConstantLengthDataset(tokenizer, train_data,
|
79 |
+
seq_length=args.seq_length)
|
80 |
+
valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
|
81 |
+
seq_length=args.seq_length)
|
82 |
+
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
|
83 |
+
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
|
84 |
+
return train_dataloader, eval_dataloader
|
85 |
+
|
86 |
+
def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
|
87 |
+
params_with_wd, params_without_wd = [], []
|
88 |
+
for n, p in model.named_parameters():
|
89 |
+
if any(nd in n for nd in no_decay): params_without_wd.append(p)
|
90 |
+
else: params_with_wd.append(p)
|
91 |
+
return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
|
92 |
+
{'params': params_without_wd, 'weight_decay': 0.0}]
|
93 |
+
|
94 |
+
def log_metrics(step, metrics):
|
95 |
+
logger.info(f"Step {step}: {metrics}")
|
96 |
+
if accelerator.is_main_process:
|
97 |
+
wandb.log(metrics)
|
98 |
+
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
|
99 |
+
|
100 |
+
def evaluate(args):
|
101 |
+
model.eval()
|
102 |
+
losses = []
|
103 |
+
for step, batch in enumerate(eval_dataloader):
|
104 |
+
with torch.no_grad():
|
105 |
+
outputs = model(batch, labels=batch)
|
106 |
+
loss = outputs.loss.repeat(args.valid_batch_size)
|
107 |
+
losses.append(accelerator.gather(loss))
|
108 |
+
if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
|
109 |
+
loss = torch.mean(torch.cat(losses))
|
110 |
+
try: perplexity = torch.exp(loss)
|
111 |
+
except OverflowError: perplexity = float("inf")
|
112 |
+
return loss.item(), perplexity.item()
|
113 |
+
|
114 |
+
# Accelerator
|
115 |
+
accelerator = Accelerator(dispatch_batches=True)
|
116 |
+
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
|
117 |
+
# Hyperparameters
|
118 |
+
project_name = 'transformersbook/codeparrot'
|
119 |
+
dataset_name = '../llama-from-scratch/codeparrot'
|
120 |
+
config = {"train_batch_size": 2,
|
121 |
+
"valid_batch_size": 2,
|
122 |
+
"weight_decay": 0.1,
|
123 |
+
"shuffle_buffer": 1_000,
|
124 |
+
"learning_rate": 2e-4,
|
125 |
+
"lr_scheduler_type": "cosine",
|
126 |
+
"num_warmup_steps": 750,
|
127 |
+
"gradient_accumulation_steps": 16,
|
128 |
+
"max_train_steps": 50_000,
|
129 |
+
"max_eval_steps": -1,
|
130 |
+
"seq_length": 1024,
|
131 |
+
"seed": 1,
|
132 |
+
"save_checkpoint_steps": 50_000}
|
133 |
+
args = Namespace(**config, **acc_state)
|
134 |
+
samples_per_step = accelerator.state.num_processes * args.train_batch_size
|
135 |
+
set_seed(args.seed)
|
136 |
+
|
137 |
+
# Logging
|
138 |
+
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
|
139 |
+
logger.info(accelerator.state)
|
140 |
+
|
141 |
+
# Load model and tokenizer
|
142 |
+
if accelerator.is_main_process:
|
143 |
+
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
|
144 |
+
model = GPT2LMHeadModel.from_pretrained("./", gradient_checkpointing=True)
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
146 |
+
|
147 |
+
# Load dataset and dataloader
|
148 |
+
train_dataloader, eval_dataloader = create_dataloaders(dataset_name, args)
|
149 |
+
|
150 |
+
# Prepare the optimizer and learning rate scheduler
|
151 |
+
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
|
152 |
+
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
|
153 |
+
num_warmup_steps=args.num_warmup_steps,
|
154 |
+
num_training_steps=args.max_train_steps,)
|
155 |
+
def get_lr(): return optimizer.param_groups[0]['lr']
|
156 |
+
|
157 |
+
# Prepare everything with our `accelerator`.
|
158 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
159 |
+
model, optimizer, train_dataloader, eval_dataloader)
|
160 |
+
|
161 |
+
# Train model
|
162 |
+
model.train()
|
163 |
+
completed_steps = 0
|
164 |
+
for step, batch in enumerate(train_dataloader, start=1):
|
165 |
+
loss = model(batch, labels=batch, use_cache=False).loss
|
166 |
+
log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
|
167 |
+
'steps': completed_steps, 'loss/train': loss.item()})
|
168 |
+
loss = loss / args.gradient_accumulation_steps
|
169 |
+
accelerator.backward(loss)
|
170 |
+
if step % args.gradient_accumulation_steps == 0:
|
171 |
+
accelerator.clip_grad_norm_(model.parameters(), 1.0)
|
172 |
+
optimizer.step()
|
173 |
+
lr_scheduler.step()
|
174 |
+
optimizer.zero_grad()
|
175 |
+
completed_steps += 1
|
176 |
+
if step % args.save_checkpoint_steps == 0:
|
177 |
+
logger.info('Evaluating and saving model checkpoint')
|
178 |
+
eval_loss, perplexity = evaluate(args)
|
179 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
180 |
+
accelerator.wait_for_everyone()
|
181 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
182 |
+
if accelerator.is_main_process:
|
183 |
+
unwrapped_model.save_pretrained("./")
|
184 |
+
hf_repo.push_to_hub(commit_message=f'step {step}')
|
185 |
+
model.train()
|
186 |
+
if completed_steps >= args.max_train_steps:
|
187 |
+
break
|
188 |
+
|
189 |
+
# Evaluate and save the last checkpoint
|
190 |
+
logger.info('Evaluating and saving model after training')
|
191 |
+
eval_loss, perplexity = evaluate(args)
|
192 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
193 |
+
accelerator.wait_for_everyone()
|
194 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
195 |
+
if accelerator.is_main_process:
|
196 |
+
unwrapped_model.save_pretrained("./")
|
197 |
+
hf_repo.push_to_hub(commit_message=f'final model')
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 0,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"model_type": "gpt2",
|
15 |
+
"n_ctx": 1024,
|
16 |
+
"n_embd": 1600,
|
17 |
+
"n_head": 25,
|
18 |
+
"n_inner": null,
|
19 |
+
"n_layer": 48,
|
20 |
+
"n_positions": 1024,
|
21 |
+
"output_past": true,
|
22 |
+
"reorder_and_upcast_attn": true,
|
23 |
+
"resid_pdrop": 0.1,
|
24 |
+
"scale_attn_by_inverse_layer_idx": true,
|
25 |
+
"scale_attn_weights": true,
|
26 |
+
"summary_activation": null,
|
27 |
+
"summary_first_dropout": 0.1,
|
28 |
+
"summary_proj_to_labels": true,
|
29 |
+
"summary_type": "cls_index",
|
30 |
+
"summary_use_proj": true,
|
31 |
+
"task_specific_params": {
|
32 |
+
"text-generation": {
|
33 |
+
"do_sample": true,
|
34 |
+
"max_length": 50
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.11.0.dev0",
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 32768
|
41 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d702c81fb5bf32236d7359a16fe6a59f68565cc551405b544bb009c18fc72af
|
3 |
+
size 6169094681
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# torch==1.9.0
|
2 |
+
wandb
|
3 |
+
tensorboard
|
4 |
+
git+https://github.com/huggingface/huggingface_hub.git
|
5 |
+
git+https://github.com/huggingface/transformers.git
|
6 |
+
git+https://github.com/huggingface/datasets.git@json-dont-raise
|
7 |
+
git+https://github.com/huggingface/accelerate.git
|
runs/Aug27_13-51-10_desktop2.xfact.net/1724734270.8848336/events.out.tfevents.1724734270.desktop2.xfact.net.283940.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb5f71c3a698d57525a3cf9e5ec798d5207b5830cf6a239ea3201b6b36d7183
|
3 |
+
size 1702
|
runs/Aug27_13-51-10_desktop2.xfact.net/events.out.tfevents.1724734270.desktop2.xfact.net.283940.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f51f7148276851dd5d67d3ff3bc0e45b13d6509185aa286ef9ee1c88bdc436ad
|
3 |
+
size 88
|
runs/Sep20_14-28-12_leandro-16x-v100/1632148092.8874874/events.out.tfevents.1632148092.leandro-16x-v100.8660.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:222b05fb22ccb39b7d43f507f7c672d8c741e4281e65c71c12d98b19c1d3ff1f
|
3 |
+
size 1373
|
runs/Sep20_14-28-12_leandro-16x-v100/events.out.tfevents.1632148092.leandro-16x-v100.8660.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3110a4850e2eba17c258d67eacb63ff2acca8af1b29362e28d3c328621a5391d
|
3 |
+
size 147135683
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "thomwolf/codeparrot", "tokenizer_class": "GPT2Tokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/debug-cli.yejin.log
ADDED
File without changes
|
wandb/debug-internal.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20240827_135059-uy3qxte5/logs/debug-internal.log
|
wandb/debug.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20240827_135059-uy3qxte5/logs/debug.log
|
wandb/latest-run
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20240827_135059-uy3qxte5
|