--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3215 - Accuracy: 0.9594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 122 | 2.0600 | 0.5594 | | No log | 2.0 | 244 | 1.3525 | 0.7844 | | No log | 3.0 | 366 | 0.9400 | 0.8812 | | No log | 4.0 | 488 | 0.6653 | 0.9344 | | 1.295 | 5.0 | 610 | 0.5045 | 0.9469 | | 1.295 | 6.0 | 732 | 0.4192 | 0.9594 | | 1.295 | 7.0 | 854 | 0.3692 | 0.9563 | | 1.295 | 8.0 | 976 | 0.3445 | 0.9563 | | 0.2942 | 9.0 | 1098 | 0.3258 | 0.9563 | | 0.2942 | 10.0 | 1220 | 0.3215 | 0.9594 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0