# create image resolution histogram from glob import glob from PIL import Image from tqdm.auto import tqdm import os tmfiles_f = glob("/home/ubuntu/y1/DistilDIRE/datasets/truemedia-political/images/fakes/*") tmfiles_r = glob("/home/ubuntu/y1/DistilDIRE/datasets/truemedia-political/images/reals/*") files_f = glob("/home/ubuntu/y1/DistilDIRE/datasets/y1-global-truemedia/images/fakes/*") files_r = glob("/truemedia-eval/y1dataset/images/reals/*") # files_f += glob("/home/ubuntu/Datasets/stylegan2-ffhq/train/*") # files_r += glob("/home/ubuntu/Datasets/coco-2017-train/train2017/train/*") training_f = [] fake_cnt = 0 real_cnt = 0 for f in tqdm(files_f): b = os.stat(f).st_size img = Image.open(f) w, h = img.size if (b/(w*h)) < 1: fake_cnt += 1 training_f.append(b/(w*h)) training_r = [] for f in tqdm(files_r): try: img = Image.open(f) b = os.stat(f).st_size w, h = img.size if (b/(w*h)) < 1: real_cnt += 1 training_r.append(b/(w*h)) except: continue TM_r = [] for f in tqdm(tmfiles_r): try: img = Image.open(f) b = os.stat(f).st_size w, h = img.size TM_r.append(b/(w*h)) except: continue TM_f = [] for f in tqdm(tmfiles_f): try: img = Image.open(f) b = os.stat(f).st_size w, h = img.size TM_f.append(b/(w*h)) except: continue import matplotlib.pyplot as plt import numpy as np # plot 2d (w, h) plt.figure(figsize=(8, 6)) plt.hist(training_r, bins=100, alpha=0.5) plt.hist(training_f, bins=100, alpha=0.5, color='g') plt.hist(TM_r, bins=100, alpha=0.5, color='r') plt.hist(TM_f, bins=100, alpha=0.5, color='y') # Bytes/pixel plt.xlabel('Bytes/pixel') plt.legend(['Training-real', 'Training-fake', 'TrueMedia-real', 'TrueMedia-fake']) # save plt.savefig('comp_hist.png') print(f"Training real: {real_cnt}, Training fake: {fake_cnt}")