Update flax to pytorch script
Browse files- flax_to_pytorch.py +5 -47
flax_to_pytorch.py
CHANGED
@@ -1,47 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
#
|
7 |
-
# pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
8 |
-
# pt_model.save_pretrained(".")
|
9 |
-
#
|
10 |
-
#
|
11 |
-
# # tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
12 |
-
# # tf_model.save_pretrained(".")
|
13 |
-
#
|
14 |
-
|
15 |
-
#!/usr/bin/env python
|
16 |
-
import tempfile
|
17 |
-
import jax
|
18 |
-
import numpy as np
|
19 |
-
import torch
|
20 |
-
from jax import numpy as jnp
|
21 |
-
from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration, T5ForConditionalGeneration
|
22 |
-
|
23 |
-
def to_f32(t):
|
24 |
-
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
25 |
-
|
26 |
-
def main():
|
27 |
-
# Saving extra files from config.json and tokenizer.json files
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained("./")
|
29 |
-
tokenizer.save_pretrained("./")
|
30 |
-
# Temporary saving bfloat16 Flax model into float32
|
31 |
-
tmp = tempfile.mkdtemp()
|
32 |
-
flax_model = FlaxT5ForConditionalGeneration.from_pretrained("./")
|
33 |
-
flax_model.params = to_f32(flax_model.params)
|
34 |
-
flax_model.save_pretrained(tmp)
|
35 |
-
# Converting float32 Flax to PyTorch
|
36 |
-
pt_model = T5ForConditionalGeneration.from_pretrained(tmp, from_flax=True)
|
37 |
-
pt_model.save_pretrained("./", save_config=False)
|
38 |
-
|
39 |
-
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32)
|
40 |
-
input_ids_pt = torch.tensor(input_ids)
|
41 |
-
logits_pt = pt_model(input_ids_pt).logits
|
42 |
-
print(logits_pt)
|
43 |
-
logits_fx = flax_model(input_ids).logits
|
44 |
-
print(logits_fx)
|
45 |
-
|
46 |
-
if __name__ == "__main__":
|
47 |
-
main()
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration, TFT5ForConditionalGeneration
|
2 |
+
pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
3 |
+
pt_model.save_pretrained(".")
|
4 |
+
tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
5 |
+
tf_model.save_pretrained(".")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|