Saving scripts, logs and weights after 5 epochs
Browse files- README.md +11 -0
- config.json +29 -0
- events.out.tfevents.1641239709.t1v-n-aa1c2160-w-0.407004.0.v2 +3 -0
- flax_model.msgpack +3 -0
- flax_to_pytorch.py +60 -0
- run_sum.sh +20 -0
- run_summarization_flax.py +895 -0
- special_tokens_map.json +1 -0
- test_results.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
language:
|
5 |
+
- dutch
|
6 |
+
datasets:
|
7 |
+
- cnn_dm_nl
|
8 |
+
widget:
|
9 |
+
- text: "(CNN) Skywatchers in West-Noord-Amerika zijn in voor een traktatie: een bijna vijf minuten totale maansverduistering vanmorgen. Hier is hoe het zich ontvouwt:. Het begon om 3:16 a.m. Pacific Daylight Tijd, toen de maan begon te bewegen in de schaduw van de Aarde. Voor het volgende uur en 45 minuten, die schaduw zal bewegen over de maan en verzwolgen het om 4:58 a.m. Pacific Time. De totale verduistering zal slechts vier minuten en 43 seconden duren, en NASA zegt dat maakt het de kortste van de eeuw. Kijken live op NASA TV. Terwijl mensen ten westen van de Mississippi River zal het beste uitzicht hebben, ten minste een gedeeltelijke verduistering zal zichtbaar zijn over de hele natie. Maar zonsopgang zal de show te onderbreken op de Oostkust. Delen van Zuid-Amerika, India, China en China Een maansverduistering gebeurt wanneer de zon, de aarde en de maan een rechte lijn vormen in de ruimte, met de aarde in het midden. De zon schijnt op de Aarde en creëert een schaduw. Als de maan dieper in die schaduw beweegt, lijkt het donker te worden en lijkt zelfs een roodachtige kleur te zijn. Waarom rood? Omdat de atmosfeer van de Aarde het grootste deel van het blauwe licht filtert. Sommige mensen hebben het effect van de \"bloedmaan\" bijgenaamd. NASA zegt dat maansverduisteringen meestal ten minste twee keer per jaar plaatsvinden, maar deze verduistering is de derde in een reeks van vier op een rij, bekend als een \"tetrad.\" De eerste was op 15 april 2014. De tweede was in september 2014, de volgende is zaterdag en er zal er een meer zijn, op 28 september. Als je meer wilt weten over de verduistering, NASA astronoom Mitzi Adam. Deel uw foto's met CNN iReport."
|
10 |
+
- text: "(CNN) Filipino's worden gewaarschuwd om op wacht te staan voor flash overstromingen en aardverschuivingen als tropische storm Maysak benaderde de Aziatische eiland natie zaterdag. Slechts een paar dagen geleden, Maysak kreeg super tyfoon status dankzij zijn aanhoudende 150 km/h winden. Het heeft sindsdien verloren veel stoom als het naar het westen in de Stille Oceaan heeft gedraaid. Het is nu geclassificeerd als een tropische storm, volgens de Filipijnse nationale weerdienst, die noemt het een andere naam, Chedeng. Het heeft stabiele winden van meer dan 70 km/h (115 km/h) en gusts tot 90 km/h vanaf 17.00 uur (5 uur ET) Zaterdag. Toch, dat betekent niet dat Maysak zal geen pak een wallop. Autoriteiten nam preventieve stappen om mensen veilig te houden zoals barring outdoor activiteiten zoals zwemmen, surfen, di. Gabriel Llave, een ramp ambtenaar, vertelde PNA dat toeristen die aankomen zaterdag in en rond de kustplaats van Aurora \"zal niet worden geaccepteerd door de eigenaren van hotels, resorts, herbergen en dergelijke... en zal worden geadviseerd om terug te keren naar hun respectievelijke plaatsen.\" Aldczar Aurelio, een meteoroloog met de Filippijnse Atmosferische, Geofysische en Astronomische Diensten Administratie (PAGASA), zei dat de storm was gecentreerd 200 mijl ten zuidwesten van de provincie Aurora vanaf 5 uur (5 uur ET) en richting het westen op een 12.5 mph clip. Het is verwacht dat landval zondagochtend maken op de zuidoostelijke kust van de provincie Isabela en zijn uit de Filippijnen tegen maandag. Ahead van de storm. Isabela Gov. Faustino Dry III waarschuwde zaterdag dat bewoners moet handelen als deze zal maken landfall zondagochtend op de zuidoostelijke kust van de provincie Isabela en zijn uit de Filippijnen voor maandag."
|
11 |
+
---
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "yhavinga/t5-v1.1-large-dutch-cased-2",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2816,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 1024,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "gated-gelu",
|
13 |
+
"gradient_checkpointing": false,
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"layer_norm_epsilon": 1e-06,
|
17 |
+
"model_type": "t5",
|
18 |
+
"num_decoder_layers": 24,
|
19 |
+
"num_heads": 16,
|
20 |
+
"num_layers": 24,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_num_buckets": 32,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.13.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32103
|
29 |
+
}
|
events.out.tfevents.1641239709.t1v-n-aa1c2160-w-0.407004.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36f2bc11a0e9a631926af0d351d748a1a872d7313635802ac05d4d14cdf3c521
|
3 |
+
size 13588956
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b7bd8457d90f1af45c642184666338d163025488df7ed0a26e4846c0b21fc5
|
3 |
+
size 3132419607
|
flax_to_pytorch.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration, TFT5ForConditionalGeneration
|
2 |
+
|
3 |
+
pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
4 |
+
pt_model.save_pretrained(".")
|
5 |
+
|
6 |
+
# tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
7 |
+
# tf_model.save_pretrained(".")
|
8 |
+
|
9 |
+
|
10 |
+
exit()
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# from transformers import T5ForConditionalGeneration, TFT5ForConditionalGeneration, FlaxT5ForConditionalGeneration
|
15 |
+
# import numpy as np
|
16 |
+
# import torch
|
17 |
+
#
|
18 |
+
# fx_model = FlaxT5ForConditionalGeneration.from_pretrained(".")
|
19 |
+
#
|
20 |
+
# pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
21 |
+
# pt_model.save_pretrained(".")
|
22 |
+
#
|
23 |
+
#
|
24 |
+
# # tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
25 |
+
# # tf_model.save_pretrained(".")
|
26 |
+
#
|
27 |
+
|
28 |
+
#!/usr/bin/env python
|
29 |
+
import tempfile
|
30 |
+
import jax
|
31 |
+
import numpy as np
|
32 |
+
import torch
|
33 |
+
from jax import numpy as jnp
|
34 |
+
from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration, T5ForConditionalGeneration
|
35 |
+
|
36 |
+
def to_f32(t):
|
37 |
+
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
38 |
+
|
39 |
+
def main():
|
40 |
+
# Saving extra files from config.json and tokenizer.json files
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
42 |
+
tokenizer.save_pretrained("./")
|
43 |
+
# Temporary saving bfloat16 Flax model into float32
|
44 |
+
tmp = tempfile.mkdtemp()
|
45 |
+
flax_model = FlaxT5ForConditionalGeneration.from_pretrained("./")
|
46 |
+
flax_model.params = to_f32(flax_model.params)
|
47 |
+
flax_model.save_pretrained(tmp)
|
48 |
+
# Converting float32 Flax to PyTorch
|
49 |
+
pt_model = T5ForConditionalGeneration.from_pretrained(tmp, from_flax=True)
|
50 |
+
pt_model.save_pretrained("./", save_config=False)
|
51 |
+
|
52 |
+
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32)
|
53 |
+
input_ids_pt = torch.tensor(input_ids)
|
54 |
+
logits_pt = pt_model(input_ids_pt).logits
|
55 |
+
print(logits_pt)
|
56 |
+
logits_fx = flax_model(input_ids).logits
|
57 |
+
print(logits_fx)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
main()
|
run_sum.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_summarization_flax.py \
|
2 |
+
--output_dir . \
|
3 |
+
--model_name_or_path yhavinga/t5-v1.1-large-dutch-cased-2 \
|
4 |
+
--tokenizer_name yhavinga/t5-v1.1-large-dutch-cased-2 \
|
5 |
+
--dataset_name="ml6team/cnn_dailymail_nl" \
|
6 |
+
--text_column article \
|
7 |
+
--summary_column highlights \
|
8 |
+
--do_train --do_eval --do_predict --predict_with_generate \
|
9 |
+
--num_train_epochs 5 \
|
10 |
+
--learning_rate 5e-5 --warmup_steps 0 \
|
11 |
+
--per_device_train_batch_size 2 \
|
12 |
+
--per_device_eval_batch_size 2 \
|
13 |
+
--overwrite_output_dir \
|
14 |
+
--adafactor \
|
15 |
+
--max_source_length 1024 --max_target_length 96 \
|
16 |
+
--save_steps="20000" \
|
17 |
+
--eval_steps="5000" \
|
18 |
+
|
19 |
+
|
20 |
+
# --push_to_hub
|
run_summarization_flax.py
ADDED
@@ -0,0 +1,895 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for summarization.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import json
|
22 |
+
import logging
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
import time
|
26 |
+
from dataclasses import asdict, dataclass, field
|
27 |
+
from enum import Enum
|
28 |
+
from functools import partial
|
29 |
+
from pathlib import Path
|
30 |
+
from typing import Callable, Optional
|
31 |
+
|
32 |
+
import datasets
|
33 |
+
import nltk # Here to have a nice missing dependency error message early on
|
34 |
+
import numpy as np
|
35 |
+
from datasets import Dataset, load_dataset, load_metric
|
36 |
+
from tqdm import tqdm
|
37 |
+
|
38 |
+
import jax
|
39 |
+
import jax.numpy as jnp
|
40 |
+
import optax
|
41 |
+
import transformers
|
42 |
+
from filelock import FileLock
|
43 |
+
from flax import jax_utils, traverse_util
|
44 |
+
from flax.jax_utils import unreplicate
|
45 |
+
from flax.training import train_state
|
46 |
+
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
47 |
+
from huggingface_hub import Repository
|
48 |
+
from transformers import (
|
49 |
+
CONFIG_MAPPING,
|
50 |
+
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
51 |
+
AutoConfig,
|
52 |
+
AutoTokenizer,
|
53 |
+
FlaxAutoModelForSeq2SeqLM,
|
54 |
+
HfArgumentParser,
|
55 |
+
is_tensorboard_available,
|
56 |
+
)
|
57 |
+
from transformers.file_utils import get_full_repo_name, is_offline_mode
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
try:
|
63 |
+
nltk.data.find("tokenizers/punkt")
|
64 |
+
except (LookupError, OSError):
|
65 |
+
if is_offline_mode():
|
66 |
+
raise LookupError(
|
67 |
+
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
|
68 |
+
)
|
69 |
+
with FileLock(".lock") as lock:
|
70 |
+
nltk.download("punkt", quiet=True)
|
71 |
+
|
72 |
+
|
73 |
+
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
|
74 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class TrainingArguments:
|
79 |
+
output_dir: str = field(
|
80 |
+
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
|
81 |
+
)
|
82 |
+
overwrite_output_dir: bool = field(
|
83 |
+
default=False,
|
84 |
+
metadata={
|
85 |
+
"help": (
|
86 |
+
"Overwrite the content of the output directory. "
|
87 |
+
"Use this to continue training if output_dir points to a checkpoint directory."
|
88 |
+
)
|
89 |
+
},
|
90 |
+
)
|
91 |
+
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
|
92 |
+
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
|
93 |
+
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
|
94 |
+
per_device_train_batch_size: int = field(
|
95 |
+
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
|
96 |
+
)
|
97 |
+
per_device_eval_batch_size: int = field(
|
98 |
+
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
|
99 |
+
)
|
100 |
+
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
|
101 |
+
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
|
102 |
+
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
|
103 |
+
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
104 |
+
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
105 |
+
label_smoothing_factor: float = field(
|
106 |
+
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
|
107 |
+
)
|
108 |
+
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
109 |
+
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
110 |
+
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
111 |
+
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
|
112 |
+
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
|
113 |
+
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
|
114 |
+
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
|
115 |
+
push_to_hub: bool = field(
|
116 |
+
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
|
117 |
+
)
|
118 |
+
hub_model_id: str = field(
|
119 |
+
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
|
120 |
+
)
|
121 |
+
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
|
122 |
+
|
123 |
+
def __post_init__(self):
|
124 |
+
if self.output_dir is not None:
|
125 |
+
self.output_dir = os.path.expanduser(self.output_dir)
|
126 |
+
|
127 |
+
def to_dict(self):
|
128 |
+
"""
|
129 |
+
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
|
130 |
+
the token values by removing their value.
|
131 |
+
"""
|
132 |
+
d = asdict(self)
|
133 |
+
for k, v in d.items():
|
134 |
+
if isinstance(v, Enum):
|
135 |
+
d[k] = v.value
|
136 |
+
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
|
137 |
+
d[k] = [x.value for x in v]
|
138 |
+
if k.endswith("_token"):
|
139 |
+
d[k] = f"<{k.upper()}>"
|
140 |
+
return d
|
141 |
+
|
142 |
+
|
143 |
+
@dataclass
|
144 |
+
class ModelArguments:
|
145 |
+
"""
|
146 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
147 |
+
"""
|
148 |
+
|
149 |
+
model_name_or_path: Optional[str] = field(
|
150 |
+
default=None,
|
151 |
+
metadata={
|
152 |
+
"help": "The model checkpoint for weights initialization."
|
153 |
+
"Don't set if you want to train a model from scratch."
|
154 |
+
},
|
155 |
+
)
|
156 |
+
model_type: Optional[str] = field(
|
157 |
+
default=None,
|
158 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
159 |
+
)
|
160 |
+
config_name: Optional[str] = field(
|
161 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
162 |
+
)
|
163 |
+
tokenizer_name: Optional[str] = field(
|
164 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
165 |
+
)
|
166 |
+
cache_dir: Optional[str] = field(
|
167 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
168 |
+
)
|
169 |
+
use_fast_tokenizer: bool = field(
|
170 |
+
default=True,
|
171 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
172 |
+
)
|
173 |
+
dtype: Optional[str] = field(
|
174 |
+
default="float32",
|
175 |
+
metadata={
|
176 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
177 |
+
},
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
@dataclass
|
182 |
+
class DataTrainingArguments:
|
183 |
+
"""
|
184 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
185 |
+
"""
|
186 |
+
|
187 |
+
dataset_name: Optional[str] = field(
|
188 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
189 |
+
)
|
190 |
+
dataset_config_name: Optional[str] = field(
|
191 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
192 |
+
)
|
193 |
+
text_column: Optional[str] = field(
|
194 |
+
default=None,
|
195 |
+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
196 |
+
)
|
197 |
+
summary_column: Optional[str] = field(
|
198 |
+
default=None,
|
199 |
+
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
|
200 |
+
)
|
201 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
202 |
+
validation_file: Optional[str] = field(
|
203 |
+
default=None,
|
204 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
205 |
+
)
|
206 |
+
test_file: Optional[str] = field(
|
207 |
+
default=None,
|
208 |
+
metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
|
209 |
+
)
|
210 |
+
max_source_length: Optional[int] = field(
|
211 |
+
default=1024,
|
212 |
+
metadata={
|
213 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
214 |
+
"than this will be truncated, sequences shorter will be padded."
|
215 |
+
},
|
216 |
+
)
|
217 |
+
max_target_length: Optional[int] = field(
|
218 |
+
default=128,
|
219 |
+
metadata={
|
220 |
+
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
221 |
+
"than this will be truncated, sequences shorter will be padded."
|
222 |
+
},
|
223 |
+
)
|
224 |
+
val_max_target_length: Optional[int] = field(
|
225 |
+
default=None,
|
226 |
+
metadata={
|
227 |
+
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
228 |
+
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
229 |
+
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
|
230 |
+
"during evaluation."
|
231 |
+
},
|
232 |
+
)
|
233 |
+
max_train_samples: Optional[int] = field(
|
234 |
+
default=None,
|
235 |
+
metadata={
|
236 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
237 |
+
"value if set."
|
238 |
+
},
|
239 |
+
)
|
240 |
+
max_eval_samples: Optional[int] = field(
|
241 |
+
default=None,
|
242 |
+
metadata={
|
243 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
244 |
+
"value if set."
|
245 |
+
},
|
246 |
+
)
|
247 |
+
max_predict_samples: Optional[int] = field(
|
248 |
+
default=None,
|
249 |
+
metadata={
|
250 |
+
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
251 |
+
"value if set."
|
252 |
+
},
|
253 |
+
)
|
254 |
+
preprocessing_num_workers: Optional[int] = field(
|
255 |
+
default=None,
|
256 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
257 |
+
)
|
258 |
+
source_prefix: Optional[str] = field(
|
259 |
+
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
260 |
+
)
|
261 |
+
predict_with_generate: bool = field(
|
262 |
+
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
|
263 |
+
)
|
264 |
+
num_beams: Optional[int] = field(
|
265 |
+
default=None,
|
266 |
+
metadata={
|
267 |
+
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
|
268 |
+
"which is used during evaluation."
|
269 |
+
},
|
270 |
+
)
|
271 |
+
overwrite_cache: bool = field(
|
272 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
273 |
+
)
|
274 |
+
|
275 |
+
def __post_init__(self):
|
276 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
277 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
278 |
+
else:
|
279 |
+
if self.train_file is not None:
|
280 |
+
extension = self.train_file.split(".")[-1]
|
281 |
+
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
282 |
+
if self.validation_file is not None:
|
283 |
+
extension = self.validation_file.split(".")[-1]
|
284 |
+
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
285 |
+
if self.val_max_target_length is None:
|
286 |
+
self.val_max_target_length = self.max_target_length
|
287 |
+
|
288 |
+
|
289 |
+
summarization_name_mapping = {
|
290 |
+
"amazon_reviews_multi": ("review_body", "review_title"),
|
291 |
+
"big_patent": ("description", "abstract"),
|
292 |
+
"cnn_dailymail": ("article", "highlights"),
|
293 |
+
"orange_sum": ("text", "summary"),
|
294 |
+
"pn_summary": ("article", "summary"),
|
295 |
+
"psc": ("extract_text", "summary_text"),
|
296 |
+
"samsum": ("dialogue", "summary"),
|
297 |
+
"thaisum": ("body", "summary"),
|
298 |
+
"xglue": ("news_body", "news_title"),
|
299 |
+
"xsum": ("document", "summary"),
|
300 |
+
"wiki_summary": ("article", "highlights"),
|
301 |
+
}
|
302 |
+
|
303 |
+
|
304 |
+
class TrainState(train_state.TrainState):
|
305 |
+
dropout_rng: jnp.ndarray
|
306 |
+
|
307 |
+
def replicate(self):
|
308 |
+
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
309 |
+
|
310 |
+
|
311 |
+
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
|
312 |
+
"""
|
313 |
+
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
314 |
+
Shuffle batches if `shuffle` is `True`.
|
315 |
+
"""
|
316 |
+
steps_per_epoch = len(dataset) // batch_size
|
317 |
+
|
318 |
+
if shuffle:
|
319 |
+
batch_idx = jax.random.permutation(rng, len(dataset))
|
320 |
+
else:
|
321 |
+
batch_idx = jnp.arange(len(dataset))
|
322 |
+
|
323 |
+
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
324 |
+
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
325 |
+
|
326 |
+
for idx in batch_idx:
|
327 |
+
batch = dataset[idx]
|
328 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
329 |
+
|
330 |
+
batch = shard(batch)
|
331 |
+
|
332 |
+
yield batch
|
333 |
+
|
334 |
+
|
335 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
336 |
+
summary_writer.scalar("train_time", train_time, step)
|
337 |
+
|
338 |
+
train_metrics = get_metrics(train_metrics)
|
339 |
+
for key, vals in train_metrics.items():
|
340 |
+
tag = f"train_{key}"
|
341 |
+
for i, val in enumerate(vals):
|
342 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
343 |
+
|
344 |
+
for metric_name, value in eval_metrics.items():
|
345 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
346 |
+
|
347 |
+
|
348 |
+
def create_learning_rate_fn(
|
349 |
+
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
350 |
+
) -> Callable[[int], jnp.array]:
|
351 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
352 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
353 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
354 |
+
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
355 |
+
decay_fn = optax.linear_schedule(
|
356 |
+
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
357 |
+
)
|
358 |
+
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
359 |
+
return schedule_fn
|
360 |
+
|
361 |
+
|
362 |
+
def main():
|
363 |
+
# See all possible arguments in src/transformers/training_args.py
|
364 |
+
# or by passing the --help flag to this script.
|
365 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
366 |
+
|
367 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
368 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
369 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
370 |
+
# let's parse it to get our arguments.
|
371 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
372 |
+
else:
|
373 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
374 |
+
|
375 |
+
if (
|
376 |
+
os.path.exists(training_args.output_dir)
|
377 |
+
and os.listdir(training_args.output_dir)
|
378 |
+
and training_args.do_train
|
379 |
+
and not training_args.overwrite_output_dir
|
380 |
+
):
|
381 |
+
raise ValueError(
|
382 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
383 |
+
"Use --overwrite_output_dir to overcome."
|
384 |
+
)
|
385 |
+
|
386 |
+
# Make one log on every process with the configuration for debugging.
|
387 |
+
logging.basicConfig(
|
388 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
389 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
390 |
+
level=logging.INFO,
|
391 |
+
)
|
392 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
393 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
394 |
+
if jax.process_index() == 0:
|
395 |
+
datasets.utils.logging.set_verbosity_warning()
|
396 |
+
transformers.utils.logging.set_verbosity_info()
|
397 |
+
else:
|
398 |
+
datasets.utils.logging.set_verbosity_error()
|
399 |
+
transformers.utils.logging.set_verbosity_error()
|
400 |
+
|
401 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
402 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
403 |
+
|
404 |
+
# Handle the repository creation
|
405 |
+
if training_args.push_to_hub:
|
406 |
+
if training_args.hub_model_id is None:
|
407 |
+
repo_name = get_full_repo_name(
|
408 |
+
Path(training_args.output_dir).absolute().name, token=training_args.hub_token
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
repo_name = training_args.hub_model_id
|
412 |
+
repo = Repository(training_args.output_dir, clone_from=repo_name)
|
413 |
+
|
414 |
+
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
415 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
416 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
417 |
+
#
|
418 |
+
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
|
419 |
+
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
|
420 |
+
#
|
421 |
+
if data_args.dataset_name is not None:
|
422 |
+
# Downloading and loading a dataset from the hub.
|
423 |
+
dataset = load_dataset(
|
424 |
+
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
data_files = {}
|
428 |
+
if data_args.train_file is not None:
|
429 |
+
data_files["train"] = data_args.train_file
|
430 |
+
extension = data_args.train_file.split(".")[-1]
|
431 |
+
if data_args.validation_file is not None:
|
432 |
+
data_files["validation"] = data_args.validation_file
|
433 |
+
extension = data_args.validation_file.split(".")[-1]
|
434 |
+
if data_args.test_file is not None:
|
435 |
+
data_files["test"] = data_args.test_file
|
436 |
+
extension = data_args.test_file.split(".")[-1]
|
437 |
+
dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
438 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
439 |
+
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
440 |
+
|
441 |
+
# Load pretrained model and tokenizer
|
442 |
+
|
443 |
+
if model_args.config_name:
|
444 |
+
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
|
445 |
+
elif model_args.model_name_or_path:
|
446 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
447 |
+
else:
|
448 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
449 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
450 |
+
|
451 |
+
if model_args.tokenizer_name:
|
452 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
453 |
+
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
454 |
+
)
|
455 |
+
elif model_args.model_name_or_path:
|
456 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
457 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
raise ValueError(
|
461 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
462 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
463 |
+
)
|
464 |
+
|
465 |
+
if model_args.model_name_or_path:
|
466 |
+
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
|
467 |
+
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
model = FlaxAutoModelForSeq2SeqLM.from_config(
|
471 |
+
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
472 |
+
)
|
473 |
+
|
474 |
+
if model.config.decoder_start_token_id is None:
|
475 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
476 |
+
|
477 |
+
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
478 |
+
|
479 |
+
# Preprocessing the datasets.
|
480 |
+
# We need to tokenize inputs and targets.
|
481 |
+
if training_args.do_train:
|
482 |
+
column_names = dataset["train"].column_names
|
483 |
+
elif training_args.do_eval:
|
484 |
+
column_names = dataset["validation"].column_names
|
485 |
+
elif training_args.do_predict:
|
486 |
+
column_names = dataset["test"].column_names
|
487 |
+
else:
|
488 |
+
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
489 |
+
return
|
490 |
+
|
491 |
+
# Get the column names for input/target.
|
492 |
+
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
|
493 |
+
if data_args.text_column is None:
|
494 |
+
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
495 |
+
else:
|
496 |
+
text_column = data_args.text_column
|
497 |
+
if text_column not in column_names:
|
498 |
+
raise ValueError(
|
499 |
+
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
|
500 |
+
)
|
501 |
+
if data_args.summary_column is None:
|
502 |
+
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
503 |
+
else:
|
504 |
+
summary_column = data_args.summary_column
|
505 |
+
if summary_column not in column_names:
|
506 |
+
raise ValueError(
|
507 |
+
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
|
508 |
+
)
|
509 |
+
|
510 |
+
# Temporarily set max_target_length for training.
|
511 |
+
max_target_length = data_args.max_target_length
|
512 |
+
|
513 |
+
# In Flax, for seq2seq models we need to pass `decoder_input_ids`
|
514 |
+
# as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
|
515 |
+
# for that dynamically import the `shift_tokens_right` function from the model file
|
516 |
+
model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
|
517 |
+
shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")
|
518 |
+
|
519 |
+
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
520 |
+
def preprocess_function(examples):
|
521 |
+
inputs = examples[text_column]
|
522 |
+
targets = examples[summary_column]
|
523 |
+
inputs = [prefix + inp for inp in inputs]
|
524 |
+
model_inputs = tokenizer(
|
525 |
+
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
|
526 |
+
)
|
527 |
+
|
528 |
+
# Setup the tokenizer for targets
|
529 |
+
with tokenizer.as_target_tokenizer():
|
530 |
+
labels = tokenizer(
|
531 |
+
targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
|
532 |
+
)
|
533 |
+
|
534 |
+
model_inputs["labels"] = labels["input_ids"]
|
535 |
+
decoder_input_ids = shift_tokens_right_fn(
|
536 |
+
labels["input_ids"], config.pad_token_id, config.decoder_start_token_id
|
537 |
+
)
|
538 |
+
model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)
|
539 |
+
|
540 |
+
# We need decoder_attention_mask so we can ignore pad tokens from loss
|
541 |
+
model_inputs["decoder_attention_mask"] = labels["attention_mask"]
|
542 |
+
|
543 |
+
return model_inputs
|
544 |
+
|
545 |
+
if training_args.do_train:
|
546 |
+
if "train" not in dataset:
|
547 |
+
raise ValueError("--do_train requires a train dataset")
|
548 |
+
train_dataset = dataset["train"]
|
549 |
+
if data_args.max_train_samples is not None:
|
550 |
+
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
551 |
+
train_dataset = train_dataset.map(
|
552 |
+
preprocess_function,
|
553 |
+
batched=True,
|
554 |
+
num_proc=data_args.preprocessing_num_workers,
|
555 |
+
remove_columns=column_names,
|
556 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
557 |
+
desc="Running tokenizer on train dataset",
|
558 |
+
)
|
559 |
+
|
560 |
+
if training_args.do_eval:
|
561 |
+
max_target_length = data_args.val_max_target_length
|
562 |
+
if "validation" not in dataset:
|
563 |
+
raise ValueError("--do_eval requires a validation dataset")
|
564 |
+
eval_dataset = dataset["validation"]
|
565 |
+
if data_args.max_eval_samples is not None:
|
566 |
+
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
567 |
+
eval_dataset = eval_dataset.map(
|
568 |
+
preprocess_function,
|
569 |
+
batched=True,
|
570 |
+
num_proc=data_args.preprocessing_num_workers,
|
571 |
+
remove_columns=column_names,
|
572 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
573 |
+
desc="Running tokenizer on validation dataset",
|
574 |
+
)
|
575 |
+
|
576 |
+
if training_args.do_predict:
|
577 |
+
max_target_length = data_args.val_max_target_length
|
578 |
+
if "test" not in dataset:
|
579 |
+
raise ValueError("--do_predict requires a test dataset")
|
580 |
+
predict_dataset = dataset["test"]
|
581 |
+
if data_args.max_predict_samples is not None:
|
582 |
+
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
|
583 |
+
predict_dataset = predict_dataset.map(
|
584 |
+
preprocess_function,
|
585 |
+
batched=True,
|
586 |
+
num_proc=data_args.preprocessing_num_workers,
|
587 |
+
remove_columns=column_names,
|
588 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
589 |
+
desc="Running tokenizer on prediction dataset",
|
590 |
+
)
|
591 |
+
|
592 |
+
# Metric
|
593 |
+
metric = load_metric("rouge")
|
594 |
+
|
595 |
+
def postprocess_text(preds, labels):
|
596 |
+
preds = [pred.strip() for pred in preds]
|
597 |
+
labels = [label.strip() for label in labels]
|
598 |
+
|
599 |
+
# rougeLSum expects newline after each sentence
|
600 |
+
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
|
601 |
+
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
|
602 |
+
|
603 |
+
return preds, labels
|
604 |
+
|
605 |
+
def compute_metrics(preds, labels):
|
606 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
607 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
608 |
+
|
609 |
+
# Some simple post-processing
|
610 |
+
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
611 |
+
|
612 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
613 |
+
# Extract a few results from ROUGE
|
614 |
+
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
615 |
+
|
616 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
617 |
+
result["gen_len"] = np.mean(prediction_lens)
|
618 |
+
result = {k: round(v, 4) for k, v in result.items()}
|
619 |
+
return result
|
620 |
+
|
621 |
+
# Enable tensorboard only on the master node
|
622 |
+
has_tensorboard = is_tensorboard_available()
|
623 |
+
if has_tensorboard and jax.process_index() == 0:
|
624 |
+
try:
|
625 |
+
from flax.metrics.tensorboard import SummaryWriter
|
626 |
+
|
627 |
+
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
628 |
+
except ImportError as ie:
|
629 |
+
has_tensorboard = False
|
630 |
+
logger.warning(
|
631 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
632 |
+
)
|
633 |
+
else:
|
634 |
+
logger.warning(
|
635 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
636 |
+
"Please run pip install tensorboard to enable."
|
637 |
+
)
|
638 |
+
|
639 |
+
# Initialize our training
|
640 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
641 |
+
rng, dropout_rng = jax.random.split(rng)
|
642 |
+
|
643 |
+
# Store some constant
|
644 |
+
num_epochs = int(training_args.num_train_epochs)
|
645 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
646 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
647 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
648 |
+
total_train_steps = steps_per_epoch * num_epochs
|
649 |
+
|
650 |
+
# Create learning rate schedule
|
651 |
+
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
652 |
+
len(train_dataset),
|
653 |
+
train_batch_size,
|
654 |
+
training_args.num_train_epochs,
|
655 |
+
training_args.warmup_steps,
|
656 |
+
training_args.learning_rate,
|
657 |
+
)
|
658 |
+
|
659 |
+
# We use Optax's "masking" functionality to not apply weight decay
|
660 |
+
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
661 |
+
# mask boolean with the same structure as the parameters.
|
662 |
+
# The mask is True for parameters that should be decayed.
|
663 |
+
# Note that this mask is specifically adapted for FlaxBart.
|
664 |
+
# For FlaxT5, one should correct the layer norm parameter naming
|
665 |
+
# accordingly - see `run_t5_mlm_flax.py` e.g.
|
666 |
+
def decay_mask_fn(params):
|
667 |
+
flat_params = traverse_util.flatten_dict(params)
|
668 |
+
layer_norm_params = [
|
669 |
+
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
|
670 |
+
]
|
671 |
+
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
|
672 |
+
return traverse_util.unflatten_dict(flat_mask)
|
673 |
+
|
674 |
+
# create adam optimizer
|
675 |
+
adamw = optax.adamw(
|
676 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
677 |
+
b1=training_args.adam_beta1,
|
678 |
+
b2=training_args.adam_beta2,
|
679 |
+
eps=training_args.adam_epsilon,
|
680 |
+
weight_decay=training_args.weight_decay,
|
681 |
+
mask=decay_mask_fn,
|
682 |
+
)
|
683 |
+
|
684 |
+
# Setup train state
|
685 |
+
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
|
686 |
+
|
687 |
+
# label smoothed cross entropy
|
688 |
+
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
|
689 |
+
"""
|
690 |
+
The label smoothing implementation is adapted from Flax's official example:
|
691 |
+
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
692 |
+
"""
|
693 |
+
vocab_size = logits.shape[-1]
|
694 |
+
confidence = 1.0 - label_smoothing_factor
|
695 |
+
low_confidence = (1.0 - confidence) / (vocab_size - 1)
|
696 |
+
normalizing_constant = -(
|
697 |
+
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
|
698 |
+
)
|
699 |
+
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
|
700 |
+
|
701 |
+
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
702 |
+
loss = loss - normalizing_constant
|
703 |
+
|
704 |
+
# ignore padded tokens from loss
|
705 |
+
loss = loss * padding_mask
|
706 |
+
loss = loss.sum() / padding_mask.sum()
|
707 |
+
return loss
|
708 |
+
|
709 |
+
# Define gradient update step fn
|
710 |
+
def train_step(state, batch, label_smoothing_factor=0.0):
|
711 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
712 |
+
|
713 |
+
def compute_loss(params):
|
714 |
+
labels = batch.pop("labels")
|
715 |
+
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
716 |
+
loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
|
717 |
+
return loss
|
718 |
+
|
719 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
720 |
+
loss, grad = grad_fn(state.params)
|
721 |
+
grad = jax.lax.pmean(grad, "batch")
|
722 |
+
|
723 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
724 |
+
|
725 |
+
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
726 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
727 |
+
|
728 |
+
return new_state, metrics
|
729 |
+
|
730 |
+
# Define eval fn
|
731 |
+
def eval_step(params, batch, label_smoothing_factor=0.0):
|
732 |
+
labels = batch.pop("labels")
|
733 |
+
logits = model(**batch, params=params, train=False)[0]
|
734 |
+
loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
|
735 |
+
|
736 |
+
# summarize metrics
|
737 |
+
metrics = {"loss": loss}
|
738 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
739 |
+
return metrics
|
740 |
+
|
741 |
+
# Define generation function
|
742 |
+
max_length = (
|
743 |
+
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
|
744 |
+
)
|
745 |
+
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
|
746 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
747 |
+
|
748 |
+
def generate_step(params, batch):
|
749 |
+
model.params = params
|
750 |
+
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
|
751 |
+
return output_ids.sequences
|
752 |
+
|
753 |
+
# Create parallel version of the train and eval step
|
754 |
+
p_train_step = jax.pmap(
|
755 |
+
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
|
756 |
+
)
|
757 |
+
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
|
758 |
+
p_generate_step = jax.pmap(generate_step, "batch")
|
759 |
+
|
760 |
+
# Replicate the train state on each device
|
761 |
+
state = state.replicate()
|
762 |
+
|
763 |
+
logger.info("***** Running training *****")
|
764 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
765 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
766 |
+
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
767 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
768 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
769 |
+
|
770 |
+
train_time = 0
|
771 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
772 |
+
for epoch in epochs:
|
773 |
+
# ======================== Training ================================
|
774 |
+
train_start = time.time()
|
775 |
+
|
776 |
+
# Create sampling rng
|
777 |
+
rng, input_rng = jax.random.split(rng)
|
778 |
+
train_metrics = []
|
779 |
+
|
780 |
+
# Generate an epoch by shuffling sampling indices from the train dataset
|
781 |
+
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
|
782 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
783 |
+
# train
|
784 |
+
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
|
785 |
+
batch = next(train_loader)
|
786 |
+
state, train_metric = p_train_step(state, batch)
|
787 |
+
train_metrics.append(train_metric)
|
788 |
+
|
789 |
+
train_time += time.time() - train_start
|
790 |
+
|
791 |
+
train_metric = unreplicate(train_metric)
|
792 |
+
|
793 |
+
epochs.write(
|
794 |
+
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
795 |
+
)
|
796 |
+
|
797 |
+
# ======================== Evaluating ==============================
|
798 |
+
eval_metrics = []
|
799 |
+
eval_preds = []
|
800 |
+
eval_labels = []
|
801 |
+
|
802 |
+
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
|
803 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
804 |
+
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
|
805 |
+
# Model forward
|
806 |
+
batch = next(eval_loader)
|
807 |
+
labels = batch["labels"]
|
808 |
+
|
809 |
+
metrics = p_eval_step(state.params, batch)
|
810 |
+
eval_metrics.append(metrics)
|
811 |
+
|
812 |
+
# generation
|
813 |
+
if data_args.predict_with_generate:
|
814 |
+
generated_ids = p_generate_step(state.params, batch)
|
815 |
+
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
|
816 |
+
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
|
817 |
+
|
818 |
+
# normalize eval metrics
|
819 |
+
eval_metrics = get_metrics(eval_metrics)
|
820 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
821 |
+
|
822 |
+
# compute ROUGE metrics
|
823 |
+
rouge_desc = ""
|
824 |
+
if data_args.predict_with_generate:
|
825 |
+
rouge_metrics = compute_metrics(eval_preds, eval_labels)
|
826 |
+
eval_metrics.update(rouge_metrics)
|
827 |
+
rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
|
828 |
+
|
829 |
+
# Print metrics and update progress bar
|
830 |
+
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
|
831 |
+
epochs.write(desc)
|
832 |
+
epochs.desc = desc
|
833 |
+
|
834 |
+
# Save metrics
|
835 |
+
if has_tensorboard and jax.process_index() == 0:
|
836 |
+
cur_step = epoch * (len(train_dataset) // train_batch_size)
|
837 |
+
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
|
838 |
+
|
839 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
840 |
+
if jax.process_index() == 0:
|
841 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
842 |
+
model.save_pretrained(training_args.output_dir, params=params)
|
843 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
844 |
+
if training_args.push_to_hub:
|
845 |
+
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False)
|
846 |
+
|
847 |
+
# ======================== Prediction loop ==============================
|
848 |
+
if training_args.do_predict:
|
849 |
+
logger.info("*** Predict ***")
|
850 |
+
|
851 |
+
pred_metrics = []
|
852 |
+
pred_generations = []
|
853 |
+
pred_labels = []
|
854 |
+
|
855 |
+
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
|
856 |
+
pred_steps = len(predict_dataset) // eval_batch_size
|
857 |
+
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
|
858 |
+
# Model forward
|
859 |
+
batch = next(pred_loader)
|
860 |
+
labels = batch["labels"]
|
861 |
+
|
862 |
+
metrics = p_eval_step(state.params, batch)
|
863 |
+
pred_metrics.append(metrics)
|
864 |
+
|
865 |
+
# generation
|
866 |
+
if data_args.predict_with_generate:
|
867 |
+
generated_ids = p_generate_step(state.params, batch)
|
868 |
+
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
|
869 |
+
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
|
870 |
+
|
871 |
+
# normalize prediction metrics
|
872 |
+
pred_metrics = get_metrics(pred_metrics)
|
873 |
+
pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
|
874 |
+
|
875 |
+
# compute ROUGE metrics
|
876 |
+
rouge_desc = ""
|
877 |
+
if data_args.predict_with_generate:
|
878 |
+
rouge_metrics = compute_metrics(pred_generations, pred_labels)
|
879 |
+
pred_metrics.update(rouge_metrics)
|
880 |
+
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
|
881 |
+
|
882 |
+
# Print metrics
|
883 |
+
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
|
884 |
+
logger.info(desc)
|
885 |
+
|
886 |
+
# save final metrics in json
|
887 |
+
if jax.process_index() == 0:
|
888 |
+
rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()}
|
889 |
+
path = os.path.join(training_args.output_dir, "test_results.json")
|
890 |
+
with open(path, "w") as f:
|
891 |
+
json.dump(rouge_metrics, f, indent=4, sort_keys=True)
|
892 |
+
|
893 |
+
|
894 |
+
if __name__ == "__main__":
|
895 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
test_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test_gen_len": 81.2739,
|
3 |
+
"test_rouge1": 34.4741,
|
4 |
+
"test_rouge2": 13.6346,
|
5 |
+
"test_rougeL": 25.2719,
|
6 |
+
"test_rougeLsum": 31.7216
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "special_tokens_map_file": null, "name_or_path": "yhavinga/t5-v1.1-large-dutch-cased-2", "tokenizer_class": "T5Tokenizer"}
|