File size: 1,160 Bytes
f9561b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Train

### Training Dataset

You should prepare GazeFollow and VideoAttentionTarget for training.

* Get [GazeFollow](https://www.dropbox.com/s/3ejt9pm57ht2ed4/gazefollow_extended.zip?dl=0).
* If train with auxiliary regression, use `scripts\gen_gazefollow_head_masks.py` to generate head masks.
* Get [VideoAttentionTarget](https://www.dropbox.com/s/8ep3y1hd74wdjy5/videoattentiontarget.zip?dl=0).

Check `ViTGaze/configs/common/dataloader` to modify DATA_ROOT.



### Pretrained Model



* Get [DINOv2](https://github.com/facebookresearch/dinov2) pretrained ViT-S.

* Or you could download and preprocess pretrained weights by



  ```

  cd ViTGaze

  mkdir pretrained && cd pretrained

  wget https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth
  ```

* Preprocess the model weights with `scripts\convert_pth.py` to fit Detectron2 format.

### Train ViTGaze



You can modify configs in `configs/gazefollow.py`, `configs/gazefollow_518.py` and `configs/videoattentiontarget.py`.



Run:



```
    bash train.sh

```


to train ViTGaze on the two datasets.

Training output will be saved in `ViTGaze/output/`.