Update model card with details
Browse files
README.md
CHANGED
@@ -9,4 +9,76 @@ datasets:
|
|
9 |
language:
|
10 |
- en
|
11 |
library_name: transformers
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
language:
|
10 |
- en
|
11 |
library_name: transformers
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
tags:
|
14 |
+
- medical
|
15 |
+
- code
|
16 |
+
---
|
17 |
+
# Model Card for Model ID
|
18 |
+
|
19 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
20 |
+
|
21 |
+
This model is an instruction-tuned Open LLaMa model with 7B parameters, with specialities in medical QA and code instruction.
|
22 |
+
|
23 |
+
## Model Details
|
24 |
+
|
25 |
+
<!-- Provide a longer summary of what this model is. -->
|
26 |
+
|
27 |
+
- **Model type:** LlamaForCausalLM
|
28 |
+
- **Language(s) (NLP):** English
|
29 |
+
- **License:** Apache 2.0
|
30 |
+
- **Finetuned from model (QLoRA):** [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2)
|
31 |
+
|
32 |
+
## How to Get Started with the Model
|
33 |
+
|
34 |
+
Use the code below to get started with the model.
|
35 |
+
|
36 |
+
```py
|
37 |
+
import torch
|
38 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
39 |
+
|
40 |
+
model_path = 'yhyhy3/open_llama_7b_v2_med_dolphin_qlora_merged'
|
41 |
+
|
42 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
43 |
+
model = LlamaForCausalLM.from_pretrained(
|
44 |
+
model_path, torch_dtype=torch.float16, device_map='auto',
|
45 |
+
)
|
46 |
+
|
47 |
+
prompt = '''### Instruction: Answer the following question.
|
48 |
+
|
49 |
+
### Input: What is the capital of New Jersey?
|
50 |
+
|
51 |
+
### Response:'''
|
52 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
53 |
+
|
54 |
+
generation_output = model.generate(
|
55 |
+
input_ids=input_ids, max_new_tokens=32
|
56 |
+
)
|
57 |
+
print(tokenizer.decode(generation_output[0]))
|
58 |
+
```
|
59 |
+
|
60 |
+
## Training Details
|
61 |
+
|
62 |
+
### Training Data
|
63 |
+
|
64 |
+
Converted the following datasets to alpaca:instruction format:
|
65 |
+
1. [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin)
|
66 |
+
- ORCA style dataset generously created by [Eric Hartford](https://huggingface.co/ehartford)
|
67 |
+
- Only used the 1 million GPT4 generated instructions file [flan1m-alpaca-uncensored.jsonl](https://huggingface.co/datasets/ehartford/dolphin/blob/main/flan1m-alpaca-uncensored.jsonl).
|
68 |
+
2. [LinhDuong/chatdoctor-200k](https://huggingface.co/datasets/LinhDuong/chatdoctor-200k)
|
69 |
+
- Refined dataset sourced from icliniq medical QA forum
|
70 |
+
3. [sahil2801/code_instructions_120k](https://huggingface.co/datasets/sahil2801/code_instructions_120k)
|
71 |
+
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
|
72 |
+
4. [medalpaca/medical_meadow_mediqa](https://huggingface.co/datasets/medalpaca/medical_meadow_mediqa)
|
73 |
+
- MEDIQA is a dataset of manually generated, question-driven summaries of multi and single document answers to consumer health questions from medalpaca group.
|
74 |
+
5. [kaiokendev/SuperCOT-dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset)
|
75 |
+
- Code instruction dataset generously created by Kaio Ken
|
76 |
+
|
77 |
+
### Training Procedure
|
78 |
+
|
79 |
+
Trained using axolotl QLoRa on RunPod 8x A6000 on Community Cloud for 2 epochs (~14 hours).
|
80 |
+
|
81 |
+
axolotl training config:
|
82 |
+
```yaml
|
83 |
+
|
84 |
+
```
|