--- license: mit base_model: microsoft/Phi-3.5-vision-instruct tags: - OCR pipeline_tag: image-text-to-text --- # TB-OCR: an end-to-end OCR model handling text, math latex, and markdown formats all at once ## Model Summary TB-OCR-preview (Text Block OCR), created by [Yifei Hu](https://x.com/hu_yifei), is an end-to-end OCR model handling text, math latex, and markdown formats all at once. The model takes a block of text as the input and returns clean markdown output. Headers are marked with `##`. Math expressions are guaranteed to be wrapped in brackets `\( inline math \) \[ display math \]` for easier parsing. This model does not require line-detection or math formula detection. **Running the model in 4-bit only requires ~2.8GB VRAM to load and exhibits little to none degradation.** ## Use Case (Important!) **This model is NOT designed to perform OCR on full pages.** Please consider using **TFT-ID-1.0**[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0), a text/tale/figure detection model, for full page OCR. It's also faster to split the larger text blocks into smaller ones and perform OCR in parallel (batch inference). ![image/png](https://huggingface.co/yifeihu/TB-OCR-preview-0.1/resolve/main/tb-ocr-cover.png) ## Sample Usage ```python # check out https://huggingface.co/microsoft/Phi-3.5-vision-instruct for more details import torch from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig from PIL import Image import requests model_id = "yifeihu/TB-OCR-preview-0.1" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto", _attn_implementation='flash_attention_2', quantization_config=BitsAndBytesConfig(load_in_4bit=True) # Optional: Load model in 4-bit mode to save memory ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16 ) def phi_ocr(image_url): question = "Convert the text to markdown format." # this is required image = Image.open(requests.get(image_url, stream=True).raw) prompt_message = [{ 'role': 'user', 'content': f'<|image_1|>\n{question}', }] prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True) inputs = processor(prompt, [image], return_tensors="pt").to("cuda") generation_args = { "max_new_tokens": 1024, "temperature": 0.1, "do_sample": False } generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args ) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] response = response.split("")[0] # remove the image_end token return response test_image_url = "https://huggingface.co/yifeihu/TB-OCR-preview-0.1/resolve/main/sample_input_1.png?download=true" response = phi_ocr(test_image_url) print(response) ``` ## About this preview checkpoint This is a preview model to verify the quality of a dataset from a synthetic data pipeline. The preview checkpoint only used \~250k image-text pairs (\~50M tokens). The current model is based on Phi-3.5-vision. Smaller models with even stronger performance are currently being trained or tested.