File size: 2,503 Bytes
706b559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e868778
 
 
 
 
706b559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e868778
706b559
 
 
 
 
 
e868778
 
 
 
 
 
 
 
 
 
706b559
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_billsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_billsum_model

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3699
- Rouge1: 0.1958
- Rouge2: 0.0949
- Rougel: 0.167
- Rougelsum: 0.167
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 62   | 2.7958          | 0.1228 | 0.0386 | 0.0997 | 0.1       | 19.0    |
| No log        | 2.0   | 124  | 2.5846          | 0.1385 | 0.047  | 0.1139 | 0.114     | 19.0    |
| No log        | 3.0   | 186  | 2.5034          | 0.1506 | 0.0563 | 0.1232 | 0.1234    | 19.0    |
| No log        | 4.0   | 248  | 2.4548          | 0.1734 | 0.0756 | 0.1467 | 0.1468    | 19.0    |
| No log        | 5.0   | 310  | 2.4231          | 0.1893 | 0.0877 | 0.1597 | 0.1597    | 19.0    |
| No log        | 6.0   | 372  | 2.3991          | 0.1926 | 0.0913 | 0.1638 | 0.1638    | 19.0    |
| No log        | 7.0   | 434  | 2.3862          | 0.1945 | 0.0944 | 0.166  | 0.166     | 19.0    |
| No log        | 8.0   | 496  | 2.3764          | 0.195  | 0.094  | 0.1662 | 0.1663    | 19.0    |
| 2.7718        | 9.0   | 558  | 2.3714          | 0.1959 | 0.0952 | 0.1672 | 0.1672    | 19.0    |
| 2.7718        | 10.0  | 620  | 2.3699          | 0.1958 | 0.0949 | 0.167  | 0.167     | 19.0    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1