File size: 8,101 Bytes
f6ba6ac 6870ed1 f6ba6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
language:
- "List of ISO 639-1 code for your language"
- zh
widget:
- text: "中央疫情指揮中心臨時記者會宣布全院區為紅區,擴大隔離,但鄭文燦早在七十二小時前就主張,只要是先前在桃園醫院住院、轉院的患者與陪病家屬,都要居家隔離"
example_title: "範例ㄧ"
- text: "台東地檢署21日指揮警方前往張靜的事務所及黃姓女友所經營的按摩店進行搜索"
example_title: "範例二"
- text: "各地停電事件頻傳,即便經濟部與台電均否認「台灣缺電」,但也難消國人的疑慮。"
example_title: "範例三"
---
---
license: gpl-3.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-chinese-0407-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-chinese-0407-ner
This model is a fine-tuned version of [ckiplab/albert-base-chinese](https://huggingface.co/ckiplab/albert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0948
- Precision: 0.8603
- Recall: 0.8871
- F1: 0.8735
- Accuracy: 0.9704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.3484 | 0.05 | 500 | 0.5395 | 0.1841 | 0.1976 | 0.1906 | 0.8465 |
| 0.3948 | 0.09 | 1000 | 0.2910 | 0.6138 | 0.7113 | 0.6590 | 0.9263 |
| 0.2388 | 0.14 | 1500 | 0.2030 | 0.6628 | 0.7797 | 0.7165 | 0.9414 |
| 0.1864 | 0.18 | 2000 | 0.1729 | 0.7490 | 0.7935 | 0.7706 | 0.9498 |
| 0.1754 | 0.23 | 2500 | 0.1641 | 0.7415 | 0.7869 | 0.7635 | 0.9505 |
| 0.1558 | 0.28 | 3000 | 0.1532 | 0.7680 | 0.8002 | 0.7838 | 0.9530 |
| 0.1497 | 0.32 | 3500 | 0.1424 | 0.7865 | 0.8282 | 0.8068 | 0.9555 |
| 0.1488 | 0.37 | 4000 | 0.1373 | 0.7887 | 0.8111 | 0.7997 | 0.9553 |
| 0.1361 | 0.42 | 4500 | 0.1311 | 0.7942 | 0.8382 | 0.8156 | 0.9590 |
| 0.1335 | 0.46 | 5000 | 0.1264 | 0.7948 | 0.8423 | 0.8179 | 0.9596 |
| 0.1296 | 0.51 | 5500 | 0.1242 | 0.8129 | 0.8416 | 0.8270 | 0.9603 |
| 0.1338 | 0.55 | 6000 | 0.1315 | 0.7910 | 0.8588 | 0.8235 | 0.9586 |
| 0.1267 | 0.6 | 6500 | 0.1193 | 0.8092 | 0.8399 | 0.8243 | 0.9609 |
| 0.1207 | 0.65 | 7000 | 0.1205 | 0.8021 | 0.8469 | 0.8239 | 0.9601 |
| 0.1214 | 0.69 | 7500 | 0.1201 | 0.7969 | 0.8489 | 0.8220 | 0.9605 |
| 0.1168 | 0.74 | 8000 | 0.1134 | 0.8087 | 0.8607 | 0.8339 | 0.9620 |
| 0.1162 | 0.78 | 8500 | 0.1127 | 0.8177 | 0.8492 | 0.8331 | 0.9625 |
| 0.1202 | 0.83 | 9000 | 0.1283 | 0.7986 | 0.8550 | 0.8259 | 0.9580 |
| 0.1135 | 0.88 | 9500 | 0.1101 | 0.8213 | 0.8572 | 0.8389 | 0.9638 |
| 0.1121 | 0.92 | 10000 | 0.1097 | 0.8190 | 0.8588 | 0.8384 | 0.9635 |
| 0.1091 | 0.97 | 10500 | 0.1088 | 0.8180 | 0.8521 | 0.8347 | 0.9632 |
| 0.1058 | 1.02 | 11000 | 0.1085 | 0.8136 | 0.8716 | 0.8416 | 0.9630 |
| 0.0919 | 1.06 | 11500 | 0.1079 | 0.8309 | 0.8566 | 0.8436 | 0.9646 |
| 0.0914 | 1.11 | 12000 | 0.1079 | 0.8423 | 0.8542 | 0.8482 | 0.9656 |
| 0.0921 | 1.15 | 12500 | 0.1109 | 0.8312 | 0.8647 | 0.8476 | 0.9646 |
| 0.0926 | 1.2 | 13000 | 0.1240 | 0.8413 | 0.8488 | 0.8451 | 0.9637 |
| 0.0914 | 1.25 | 13500 | 0.1040 | 0.8336 | 0.8666 | 0.8498 | 0.9652 |
| 0.0917 | 1.29 | 14000 | 0.1032 | 0.8352 | 0.8707 | 0.8526 | 0.9662 |
| 0.0928 | 1.34 | 14500 | 0.1052 | 0.8347 | 0.8656 | 0.8498 | 0.9651 |
| 0.0906 | 1.38 | 15000 | 0.1032 | 0.8399 | 0.8619 | 0.8507 | 0.9662 |
| 0.0903 | 1.43 | 15500 | 0.1074 | 0.8180 | 0.8708 | 0.8436 | 0.9651 |
| 0.0889 | 1.48 | 16000 | 0.0990 | 0.8367 | 0.8713 | 0.8537 | 0.9670 |
| 0.0914 | 1.52 | 16500 | 0.1055 | 0.8508 | 0.8506 | 0.8507 | 0.9661 |
| 0.0934 | 1.57 | 17000 | 0.0979 | 0.8326 | 0.8740 | 0.8528 | 0.9669 |
| 0.0898 | 1.62 | 17500 | 0.1022 | 0.8393 | 0.8615 | 0.8502 | 0.9668 |
| 0.0869 | 1.66 | 18000 | 0.0962 | 0.8484 | 0.8762 | 0.8621 | 0.9682 |
| 0.089 | 1.71 | 18500 | 0.1008 | 0.8447 | 0.8714 | 0.8579 | 0.9674 |
| 0.0927 | 1.75 | 19000 | 0.0986 | 0.8379 | 0.8749 | 0.8560 | 0.9673 |
| 0.0883 | 1.8 | 19500 | 0.0965 | 0.8518 | 0.8749 | 0.8632 | 0.9688 |
| 0.0965 | 1.85 | 20000 | 0.0937 | 0.8412 | 0.8766 | 0.8585 | 0.9682 |
| 0.0834 | 1.89 | 20500 | 0.0920 | 0.8451 | 0.8862 | 0.8652 | 0.9687 |
| 0.0817 | 1.94 | 21000 | 0.0943 | 0.8439 | 0.8800 | 0.8616 | 0.9686 |
| 0.088 | 1.99 | 21500 | 0.0927 | 0.8483 | 0.8762 | 0.8620 | 0.9683 |
| 0.0705 | 2.03 | 22000 | 0.0993 | 0.8525 | 0.8783 | 0.8652 | 0.9690 |
| 0.0709 | 2.08 | 22500 | 0.0976 | 0.8610 | 0.8697 | 0.8653 | 0.9689 |
| 0.0655 | 2.12 | 23000 | 0.0997 | 0.8585 | 0.8665 | 0.8625 | 0.9683 |
| 0.0656 | 2.17 | 23500 | 0.0966 | 0.8569 | 0.8822 | 0.8694 | 0.9695 |
| 0.0698 | 2.22 | 24000 | 0.0955 | 0.8604 | 0.8775 | 0.8689 | 0.9696 |
| 0.065 | 2.26 | 24500 | 0.0971 | 0.8614 | 0.8780 | 0.8696 | 0.9697 |
| 0.0653 | 2.31 | 25000 | 0.0959 | 0.8600 | 0.8787 | 0.8692 | 0.9698 |
| 0.0685 | 2.35 | 25500 | 0.1001 | 0.8610 | 0.8710 | 0.8659 | 0.9690 |
| 0.0684 | 2.4 | 26000 | 0.0969 | 0.8490 | 0.8877 | 0.8679 | 0.9690 |
| 0.0657 | 2.45 | 26500 | 0.0954 | 0.8532 | 0.8832 | 0.8680 | 0.9696 |
| 0.0668 | 2.49 | 27000 | 0.0947 | 0.8604 | 0.8793 | 0.8698 | 0.9695 |
| 0.0644 | 2.54 | 27500 | 0.0989 | 0.8527 | 0.8790 | 0.8656 | 0.9696 |
| 0.0685 | 2.59 | 28000 | 0.0955 | 0.8596 | 0.8772 | 0.8683 | 0.9700 |
| 0.0702 | 2.63 | 28500 | 0.0937 | 0.8585 | 0.8837 | 0.8709 | 0.9700 |
| 0.0644 | 2.68 | 29000 | 0.0946 | 0.8605 | 0.8830 | 0.8716 | 0.9702 |
| 0.065 | 2.72 | 29500 | 0.0953 | 0.8617 | 0.8822 | 0.8719 | 0.9701 |
| 0.063 | 2.77 | 30000 | 0.0943 | 0.8597 | 0.8848 | 0.8721 | 0.9701 |
| 0.0638 | 2.82 | 30500 | 0.0941 | 0.8619 | 0.8846 | 0.8731 | 0.9702 |
| 0.066 | 2.86 | 31000 | 0.0942 | 0.8608 | 0.8847 | 0.8726 | 0.9701 |
| 0.0589 | 2.91 | 31500 | 0.0952 | 0.8632 | 0.8836 | 0.8733 | 0.9704 |
| 0.0568 | 2.95 | 32000 | 0.0948 | 0.8603 | 0.8871 | 0.8735 | 0.9704 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|