File size: 8,101 Bytes
f6ba6ac
6870ed1
 
 
 
 
 
 
 
 
 
 
 
 
f6ba6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
language: 
  - "List of ISO 639-1 code for your language"
  - zh
widget:
- text: "中央疫情指揮中心臨時記者會宣布全院區為紅區,擴大隔離,但鄭文燦早在七十二小時前就主張,只要是先前在桃園醫院住院、轉院的患者與陪病家屬,都要居家隔離"
  example_title: "範例ㄧ"
- text: "台東地檢署21日指揮警方前往張靜的事務所及黃姓女友所經營的按摩店進行搜索"
  example_title: "範例二"
- text: "各地停電事件頻傳,即便經濟部與台電均否認「台灣缺電」,但也難消國人的疑慮。"
  example_title: "範例三"

---
---
license: gpl-3.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-chinese-0407-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# albert-base-chinese-0407-ner

This model is a fine-tuned version of [ckiplab/albert-base-chinese](https://huggingface.co/ckiplab/albert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0948
- Precision: 0.8603
- Recall: 0.8871
- F1: 0.8735
- Accuracy: 0.9704

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.3484        | 0.05  | 500   | 0.5395          | 0.1841    | 0.1976 | 0.1906 | 0.8465   |
| 0.3948        | 0.09  | 1000  | 0.2910          | 0.6138    | 0.7113 | 0.6590 | 0.9263   |
| 0.2388        | 0.14  | 1500  | 0.2030          | 0.6628    | 0.7797 | 0.7165 | 0.9414   |
| 0.1864        | 0.18  | 2000  | 0.1729          | 0.7490    | 0.7935 | 0.7706 | 0.9498   |
| 0.1754        | 0.23  | 2500  | 0.1641          | 0.7415    | 0.7869 | 0.7635 | 0.9505   |
| 0.1558        | 0.28  | 3000  | 0.1532          | 0.7680    | 0.8002 | 0.7838 | 0.9530   |
| 0.1497        | 0.32  | 3500  | 0.1424          | 0.7865    | 0.8282 | 0.8068 | 0.9555   |
| 0.1488        | 0.37  | 4000  | 0.1373          | 0.7887    | 0.8111 | 0.7997 | 0.9553   |
| 0.1361        | 0.42  | 4500  | 0.1311          | 0.7942    | 0.8382 | 0.8156 | 0.9590   |
| 0.1335        | 0.46  | 5000  | 0.1264          | 0.7948    | 0.8423 | 0.8179 | 0.9596   |
| 0.1296        | 0.51  | 5500  | 0.1242          | 0.8129    | 0.8416 | 0.8270 | 0.9603   |
| 0.1338        | 0.55  | 6000  | 0.1315          | 0.7910    | 0.8588 | 0.8235 | 0.9586   |
| 0.1267        | 0.6   | 6500  | 0.1193          | 0.8092    | 0.8399 | 0.8243 | 0.9609   |
| 0.1207        | 0.65  | 7000  | 0.1205          | 0.8021    | 0.8469 | 0.8239 | 0.9601   |
| 0.1214        | 0.69  | 7500  | 0.1201          | 0.7969    | 0.8489 | 0.8220 | 0.9605   |
| 0.1168        | 0.74  | 8000  | 0.1134          | 0.8087    | 0.8607 | 0.8339 | 0.9620   |
| 0.1162        | 0.78  | 8500  | 0.1127          | 0.8177    | 0.8492 | 0.8331 | 0.9625   |
| 0.1202        | 0.83  | 9000  | 0.1283          | 0.7986    | 0.8550 | 0.8259 | 0.9580   |
| 0.1135        | 0.88  | 9500  | 0.1101          | 0.8213    | 0.8572 | 0.8389 | 0.9638   |
| 0.1121        | 0.92  | 10000 | 0.1097          | 0.8190    | 0.8588 | 0.8384 | 0.9635   |
| 0.1091        | 0.97  | 10500 | 0.1088          | 0.8180    | 0.8521 | 0.8347 | 0.9632   |
| 0.1058        | 1.02  | 11000 | 0.1085          | 0.8136    | 0.8716 | 0.8416 | 0.9630   |
| 0.0919        | 1.06  | 11500 | 0.1079          | 0.8309    | 0.8566 | 0.8436 | 0.9646   |
| 0.0914        | 1.11  | 12000 | 0.1079          | 0.8423    | 0.8542 | 0.8482 | 0.9656   |
| 0.0921        | 1.15  | 12500 | 0.1109          | 0.8312    | 0.8647 | 0.8476 | 0.9646   |
| 0.0926        | 1.2   | 13000 | 0.1240          | 0.8413    | 0.8488 | 0.8451 | 0.9637   |
| 0.0914        | 1.25  | 13500 | 0.1040          | 0.8336    | 0.8666 | 0.8498 | 0.9652   |
| 0.0917        | 1.29  | 14000 | 0.1032          | 0.8352    | 0.8707 | 0.8526 | 0.9662   |
| 0.0928        | 1.34  | 14500 | 0.1052          | 0.8347    | 0.8656 | 0.8498 | 0.9651   |
| 0.0906        | 1.38  | 15000 | 0.1032          | 0.8399    | 0.8619 | 0.8507 | 0.9662   |
| 0.0903        | 1.43  | 15500 | 0.1074          | 0.8180    | 0.8708 | 0.8436 | 0.9651   |
| 0.0889        | 1.48  | 16000 | 0.0990          | 0.8367    | 0.8713 | 0.8537 | 0.9670   |
| 0.0914        | 1.52  | 16500 | 0.1055          | 0.8508    | 0.8506 | 0.8507 | 0.9661   |
| 0.0934        | 1.57  | 17000 | 0.0979          | 0.8326    | 0.8740 | 0.8528 | 0.9669   |
| 0.0898        | 1.62  | 17500 | 0.1022          | 0.8393    | 0.8615 | 0.8502 | 0.9668   |
| 0.0869        | 1.66  | 18000 | 0.0962          | 0.8484    | 0.8762 | 0.8621 | 0.9682   |
| 0.089         | 1.71  | 18500 | 0.1008          | 0.8447    | 0.8714 | 0.8579 | 0.9674   |
| 0.0927        | 1.75  | 19000 | 0.0986          | 0.8379    | 0.8749 | 0.8560 | 0.9673   |
| 0.0883        | 1.8   | 19500 | 0.0965          | 0.8518    | 0.8749 | 0.8632 | 0.9688   |
| 0.0965        | 1.85  | 20000 | 0.0937          | 0.8412    | 0.8766 | 0.8585 | 0.9682   |
| 0.0834        | 1.89  | 20500 | 0.0920          | 0.8451    | 0.8862 | 0.8652 | 0.9687   |
| 0.0817        | 1.94  | 21000 | 0.0943          | 0.8439    | 0.8800 | 0.8616 | 0.9686   |
| 0.088         | 1.99  | 21500 | 0.0927          | 0.8483    | 0.8762 | 0.8620 | 0.9683   |
| 0.0705        | 2.03  | 22000 | 0.0993          | 0.8525    | 0.8783 | 0.8652 | 0.9690   |
| 0.0709        | 2.08  | 22500 | 0.0976          | 0.8610    | 0.8697 | 0.8653 | 0.9689   |
| 0.0655        | 2.12  | 23000 | 0.0997          | 0.8585    | 0.8665 | 0.8625 | 0.9683   |
| 0.0656        | 2.17  | 23500 | 0.0966          | 0.8569    | 0.8822 | 0.8694 | 0.9695   |
| 0.0698        | 2.22  | 24000 | 0.0955          | 0.8604    | 0.8775 | 0.8689 | 0.9696   |
| 0.065         | 2.26  | 24500 | 0.0971          | 0.8614    | 0.8780 | 0.8696 | 0.9697   |
| 0.0653        | 2.31  | 25000 | 0.0959          | 0.8600    | 0.8787 | 0.8692 | 0.9698   |
| 0.0685        | 2.35  | 25500 | 0.1001          | 0.8610    | 0.8710 | 0.8659 | 0.9690   |
| 0.0684        | 2.4   | 26000 | 0.0969          | 0.8490    | 0.8877 | 0.8679 | 0.9690   |
| 0.0657        | 2.45  | 26500 | 0.0954          | 0.8532    | 0.8832 | 0.8680 | 0.9696   |
| 0.0668        | 2.49  | 27000 | 0.0947          | 0.8604    | 0.8793 | 0.8698 | 0.9695   |
| 0.0644        | 2.54  | 27500 | 0.0989          | 0.8527    | 0.8790 | 0.8656 | 0.9696   |
| 0.0685        | 2.59  | 28000 | 0.0955          | 0.8596    | 0.8772 | 0.8683 | 0.9700   |
| 0.0702        | 2.63  | 28500 | 0.0937          | 0.8585    | 0.8837 | 0.8709 | 0.9700   |
| 0.0644        | 2.68  | 29000 | 0.0946          | 0.8605    | 0.8830 | 0.8716 | 0.9702   |
| 0.065         | 2.72  | 29500 | 0.0953          | 0.8617    | 0.8822 | 0.8719 | 0.9701   |
| 0.063         | 2.77  | 30000 | 0.0943          | 0.8597    | 0.8848 | 0.8721 | 0.9701   |
| 0.0638        | 2.82  | 30500 | 0.0941          | 0.8619    | 0.8846 | 0.8731 | 0.9702   |
| 0.066         | 2.86  | 31000 | 0.0942          | 0.8608    | 0.8847 | 0.8726 | 0.9701   |
| 0.0589        | 2.91  | 31500 | 0.0952          | 0.8632    | 0.8836 | 0.8733 | 0.9704   |
| 0.0568        | 2.95  | 32000 | 0.0948          | 0.8603    | 0.8871 | 0.8735 | 0.9704   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6