File size: 2,561 Bytes
3a94f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fb3a5
3a94f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fatimah_fake_news_bert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fatimah_fake_news_bert

This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on [Fake and real dataset on kaggle ]([distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english))
It achieves the following results on the evaluation set:
- Loss: 0.0010
- Accuracy: 0.9998

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3298        | 0.06  | 200  | 0.0094          | 0.9987   |
| 0.0087        | 0.11  | 400  | 0.0091          | 0.9988   |
| 0.0126        | 0.17  | 600  | 0.0132          | 0.9965   |
| 0.0081        | 0.22  | 800  | 0.0100          | 0.9987   |
| 0.0132        | 0.28  | 1000 | 0.0086          | 0.9990   |
| 0.0131        | 0.33  | 1200 | 0.0070          | 0.9986   |
| 0.0086        | 0.39  | 1400 | 0.0079          | 0.9990   |
| 0.0041        | 0.45  | 1600 | 0.0057          | 0.9991   |
| 0.0069        | 0.5   | 1800 | 0.0083          | 0.9989   |
| 0.0052        | 0.56  | 2000 | 0.0043          | 0.9993   |
| 0.0           | 0.61  | 2200 | 0.0047          | 0.9993   |
| 0.003         | 0.67  | 2400 | 0.0052          | 0.9994   |
| 0.0126        | 0.72  | 2600 | 0.0028          | 0.9997   |
| 0.0047        | 0.78  | 2800 | 0.0018          | 0.9996   |
| 0.0           | 0.84  | 3000 | 0.0027          | 0.9996   |
| 0.0001        | 0.89  | 3200 | 0.0029          | 0.9996   |
| 0.0079        | 0.95  | 3400 | 0.0010          | 0.9998   |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6