yinde commited on
Commit
3a94f42
1 Parent(s): c56308d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: fatimah_fake_news_bert
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # fatimah_fake_news_bert
16
+
17
+ This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0010
20
+ - Accuracy: 0.9998
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 10
41
+ - eval_batch_size: 20
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 100
46
+ - num_epochs: 1
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.3298 | 0.06 | 200 | 0.0094 | 0.9987 |
53
+ | 0.0087 | 0.11 | 400 | 0.0091 | 0.9988 |
54
+ | 0.0126 | 0.17 | 600 | 0.0132 | 0.9965 |
55
+ | 0.0081 | 0.22 | 800 | 0.0100 | 0.9987 |
56
+ | 0.0132 | 0.28 | 1000 | 0.0086 | 0.9990 |
57
+ | 0.0131 | 0.33 | 1200 | 0.0070 | 0.9986 |
58
+ | 0.0086 | 0.39 | 1400 | 0.0079 | 0.9990 |
59
+ | 0.0041 | 0.45 | 1600 | 0.0057 | 0.9991 |
60
+ | 0.0069 | 0.5 | 1800 | 0.0083 | 0.9989 |
61
+ | 0.0052 | 0.56 | 2000 | 0.0043 | 0.9993 |
62
+ | 0.0 | 0.61 | 2200 | 0.0047 | 0.9993 |
63
+ | 0.003 | 0.67 | 2400 | 0.0052 | 0.9994 |
64
+ | 0.0126 | 0.72 | 2600 | 0.0028 | 0.9997 |
65
+ | 0.0047 | 0.78 | 2800 | 0.0018 | 0.9996 |
66
+ | 0.0 | 0.84 | 3000 | 0.0027 | 0.9996 |
67
+ | 0.0001 | 0.89 | 3200 | 0.0029 | 0.9996 |
68
+ | 0.0079 | 0.95 | 3400 | 0.0010 | 0.9998 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.17.0
74
+ - Pytorch 1.10.0+cu111
75
+ - Datasets 2.0.0
76
+ - Tokenizers 0.11.6