--- base_model: nvidia/Llama-3_1-Nemotron-51B-Instruct-GGUF library_name: transformers language: - en tags: - nvidia - llama-3 - pytorch license: other license_name: nvidia-open-model-license license_link: >- https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf pipeline_tag: text-generation quantized_by: ymcki --- Original model: https://huggingface.co/nvidia/Llama-3_1-Nemotron-51B-Instruct-GGUF ## Prompt Template ``` ### System: {system_prompt} ### User: {user_prompt} ### Assistant: ``` [Modified llama.cpp](https://github.com/ymcki/llama.cpp-b4139) to support DeciLMForCausalLM's variable Grouped Query Attention. Please download it and compile it to run the GGUFs in this repository. I am in the process of talking to llama.cpp people to see if they can merge my code to their codebase. This modification should support Llama-3_1-Nemotron 51B-Instruct fully. However, it may not support future DeciLMForCausalLM models that has no_op or linear ffn layers. Well, I suppose these support can be added when there are actually models using that types of layers. Since I am a free user, so for the time being, I only upload models that might be of interest for most people. ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3_1-Nemotron-51B-Instruct.Q4_K_M.gguf](https://huggingface.co/ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF/blob/main/Llama-3_1-Nemotron-51B-Instruct.Q4_K_M.gguf) | Q4_K_M | 31GB | Good for A100 40GB or dual 3090 | | [Llama-3_1-Nemotron-51B-Instruct.Q4_0.gguf](https://huggingface.co/ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF/blob/main/Llama-3_1-Nemotron-51B-Instruct.Q4_0.gguf) | Q4_0 | 29.3GB | For 32GB cards, e.g. 5090. | | [Llama-3_1-Nemotron-51B-Instruct.Q4_0_4_8.gguf](https://huggingface.co/ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF/blob/main/Llama-3_1-Nemotron-51B-Instruct.Q4_0_4_8.gguf) | Q4_0_4_8 | 29.3GB | For Apple Silicon | | [Llama-3_1-Nemotron-51B-Instruct.Q3_K_S.gguf](https://huggingface.co/ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF/blob/main/Llama-3_1-Nemotron-51B-Instruct.Q3_K_S.gguf) | Q3_K_S | 22.7GB | Largest model that can fit a single 3090 | ## How to check i8mm support for Apple devices ARM i8mm support is necessary to take advantage of Q4_0_4_8 gguf. All ARM architecture >= ARMv8.6-A supports i8mm. That means Apple Silicon from A15 and M2 works best with Q4_0_4_8. For Apple devices, ``` sysctl hw ``` On the other hand, Nvidia 3090 inference speed is significantly faster for Q4_0 than the other ggufs. That means for GPU inference, you better off using Q4_0. ## Which Q4_0 model to use for Apple devices | Brand | Series | Model | i8mm | sve | Quant Type | | ----- | ------ | ----- | ---- | --- | -----------| | Apple | A | A4 to A14 | No | No | Q4_0_4_4 | | Apple | A | A15 to A18 | Yes | No | Q4_0_4_8 | | Apple | M | M1 | No | No | Q4_0_4_4 | | Apple | M | M2/M3/M4 | Yes | No | Q4_0_4_8 | ## Convert safetensors to f16 gguf Make sure you have llama.cpp git cloned: ``` python3 convert_hf_to_gguf.py Llama-3_1-Nemotron 51B-Instruct/ --outfile Llama-3_1-Nemotron 51B-Instruct.f16.gguf --outtype f16 ``` ## Convert f16 gguf to Q4_0 gguf without imatrix Make sure you have llama.cpp compiled: ``` ./llama-quantize Llama-3_1-Nemotron 51B-Instruct.f16.gguf Llama-3_1-Nemotron 51B-Instruct.Q4_0.gguf q4_0 ``` ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF --include "Llama-3_1-Nemotron 51B-Instruct.Q4_0.gguf" --local-dir ./ ``` ## Running the model using llama-cli First, download and compile my [Modified llama.cpp-b4139](https://github.com/ymcki/llama.cpp-b4139) v0.2. Compile it, then run ``` ./llama-cli -m ~/Llama-3_1-Nemotron-51B-Instruct.Q3_K_S.gguf -p 'You are a European History Professor named Professor Whitman.' -cnv -ngl 100 ``` ## Credits Thank you bartowski for providing a README.md to get me started.