ynclinebk commited on
Commit
9362840
·
verified ·
1 Parent(s): 9a273ac

Model save

Browse files
Files changed (1) hide show
  1. README.md +317 -0
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: vinai/phobert-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: phobert_finetuned
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # phobert_finetuned
21
+
22
+ This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: nan
25
+ - Accuracy: 0.3833
26
+ - F1: 0.3818
27
+ - Precision: 0.4337
28
+ - Recall: 0.3833
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 250
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 1.0775 | 1.0 | 30 | nan | 0.375 | 0.3679 | 0.4021 | 0.375 |
61
+ | 1.084 | 2.0 | 60 | nan | 0.3875 | 0.3833 | 0.4203 | 0.3875 |
62
+ | 1.0727 | 3.0 | 90 | nan | 0.375 | 0.3691 | 0.4075 | 0.375 |
63
+ | 1.0743 | 4.0 | 120 | nan | 0.3792 | 0.3736 | 0.4007 | 0.3792 |
64
+ | 1.0735 | 5.0 | 150 | nan | 0.3875 | 0.3829 | 0.4342 | 0.3875 |
65
+ | 1.0916 | 6.0 | 180 | nan | 0.375 | 0.3651 | 0.3971 | 0.375 |
66
+ | 1.0802 | 7.0 | 210 | nan | 0.3792 | 0.3728 | 0.4181 | 0.3792 |
67
+ | 1.0761 | 8.0 | 240 | nan | 0.3792 | 0.3586 | 0.4018 | 0.3792 |
68
+ | 1.0793 | 9.0 | 270 | nan | 0.4042 | 0.4014 | 0.4436 | 0.4042 |
69
+ | 1.0647 | 10.0 | 300 | nan | 0.3958 | 0.3930 | 0.4418 | 0.3958 |
70
+ | 1.0842 | 11.0 | 330 | nan | 0.375 | 0.3645 | 0.3957 | 0.375 |
71
+ | 1.0724 | 12.0 | 360 | nan | 0.3792 | 0.3770 | 0.4186 | 0.3792 |
72
+ | 1.0973 | 13.0 | 390 | nan | 0.4083 | 0.4108 | 0.4453 | 0.4083 |
73
+ | 1.0667 | 14.0 | 420 | nan | 0.3833 | 0.3789 | 0.4315 | 0.3833 |
74
+ | 1.0631 | 15.0 | 450 | nan | 0.4 | 0.3996 | 0.4392 | 0.4 |
75
+ | 1.0837 | 16.0 | 480 | nan | 0.3833 | 0.3771 | 0.4097 | 0.3833 |
76
+ | 1.073 | 17.0 | 510 | nan | 0.4 | 0.4002 | 0.4272 | 0.4 |
77
+ | 1.075 | 18.0 | 540 | nan | 0.3708 | 0.3625 | 0.4032 | 0.3708 |
78
+ | 1.0865 | 19.0 | 570 | nan | 0.3875 | 0.3839 | 0.4255 | 0.3875 |
79
+ | 1.075 | 20.0 | 600 | nan | 0.3917 | 0.3872 | 0.4290 | 0.3917 |
80
+ | 1.0884 | 21.0 | 630 | nan | 0.3917 | 0.3914 | 0.4301 | 0.3917 |
81
+ | 1.0921 | 22.0 | 660 | nan | 0.3917 | 0.3900 | 0.4445 | 0.3917 |
82
+ | 1.0749 | 23.0 | 690 | nan | 0.3958 | 0.3955 | 0.4341 | 0.3958 |
83
+ | 1.0535 | 24.0 | 720 | nan | 0.3917 | 0.3879 | 0.4297 | 0.3917 |
84
+ | 1.058 | 25.0 | 750 | nan | 0.3917 | 0.3881 | 0.4361 | 0.3917 |
85
+ | 1.0812 | 26.0 | 780 | nan | 0.3958 | 0.3944 | 0.4459 | 0.3958 |
86
+ | 1.0743 | 27.0 | 810 | nan | 0.3875 | 0.3844 | 0.4607 | 0.3875 |
87
+ | 1.0721 | 28.0 | 840 | nan | 0.4 | 0.3982 | 0.4597 | 0.4 |
88
+ | 1.0776 | 29.0 | 870 | nan | 0.3833 | 0.3800 | 0.4291 | 0.3833 |
89
+ | 1.0815 | 30.0 | 900 | nan | 0.4 | 0.4006 | 0.4444 | 0.4 |
90
+ | 1.0757 | 31.0 | 930 | nan | 0.3958 | 0.3975 | 0.4246 | 0.3958 |
91
+ | 1.065 | 32.0 | 960 | nan | 0.3833 | 0.3800 | 0.4252 | 0.3833 |
92
+ | 1.0669 | 33.0 | 990 | nan | 0.3875 | 0.3841 | 0.4173 | 0.3875 |
93
+ | 1.0685 | 34.0 | 1020 | nan | 0.3875 | 0.3852 | 0.4353 | 0.3875 |
94
+ | 1.0687 | 35.0 | 1050 | nan | 0.3792 | 0.3792 | 0.4163 | 0.3792 |
95
+ | 1.0736 | 36.0 | 1080 | nan | 0.3958 | 0.3942 | 0.4350 | 0.3958 |
96
+ | 1.0919 | 37.0 | 1110 | nan | 0.3792 | 0.3718 | 0.4349 | 0.3792 |
97
+ | 1.0905 | 38.0 | 1140 | nan | 0.3875 | 0.3840 | 0.4174 | 0.3875 |
98
+ | 1.0858 | 39.0 | 1170 | nan | 0.4042 | 0.4026 | 0.4337 | 0.4042 |
99
+ | 1.0809 | 40.0 | 1200 | nan | 0.375 | 0.3725 | 0.4152 | 0.375 |
100
+ | 1.0803 | 41.0 | 1230 | nan | 0.3958 | 0.3957 | 0.4386 | 0.3958 |
101
+ | 1.0688 | 42.0 | 1260 | nan | 0.3875 | 0.3847 | 0.4412 | 0.3875 |
102
+ | 1.0928 | 43.0 | 1290 | nan | 0.3875 | 0.3875 | 0.4485 | 0.3875 |
103
+ | 1.0711 | 44.0 | 1320 | nan | 0.3917 | 0.3914 | 0.4233 | 0.3917 |
104
+ | 1.0761 | 45.0 | 1350 | nan | 0.3958 | 0.3902 | 0.4515 | 0.3958 |
105
+ | 1.0738 | 46.0 | 1380 | nan | 0.3792 | 0.3776 | 0.4134 | 0.3792 |
106
+ | 1.0743 | 47.0 | 1410 | nan | 0.3792 | 0.3759 | 0.4295 | 0.3792 |
107
+ | 1.0849 | 48.0 | 1440 | nan | 0.3833 | 0.3793 | 0.4246 | 0.3833 |
108
+ | 1.0701 | 49.0 | 1470 | nan | 0.4 | 0.4002 | 0.4257 | 0.4 |
109
+ | 1.0496 | 50.0 | 1500 | nan | 0.3917 | 0.3898 | 0.4398 | 0.3917 |
110
+ | 1.0899 | 51.0 | 1530 | nan | 0.3958 | 0.3946 | 0.4314 | 0.3958 |
111
+ | 1.066 | 52.0 | 1560 | nan | 0.375 | 0.3725 | 0.4095 | 0.375 |
112
+ | 1.0777 | 53.0 | 1590 | nan | 0.3833 | 0.3793 | 0.4119 | 0.3833 |
113
+ | 1.0721 | 54.0 | 1620 | nan | 0.3792 | 0.3744 | 0.4108 | 0.3792 |
114
+ | 1.0887 | 55.0 | 1650 | nan | 0.3792 | 0.3766 | 0.4038 | 0.3792 |
115
+ | 1.0793 | 56.0 | 1680 | nan | 0.375 | 0.3725 | 0.4060 | 0.375 |
116
+ | 1.0747 | 57.0 | 1710 | nan | 0.3792 | 0.3750 | 0.4157 | 0.3792 |
117
+ | 1.0748 | 58.0 | 1740 | nan | 0.3792 | 0.3730 | 0.4188 | 0.3792 |
118
+ | 1.0589 | 59.0 | 1770 | nan | 0.3833 | 0.3810 | 0.4335 | 0.3833 |
119
+ | 1.078 | 60.0 | 1800 | nan | 0.3833 | 0.3841 | 0.4061 | 0.3833 |
120
+ | 1.0798 | 61.0 | 1830 | nan | 0.3833 | 0.3816 | 0.4312 | 0.3833 |
121
+ | 1.0864 | 62.0 | 1860 | nan | 0.3875 | 0.3848 | 0.4313 | 0.3875 |
122
+ | 1.074 | 63.0 | 1890 | nan | 0.3833 | 0.3821 | 0.4372 | 0.3833 |
123
+ | 1.0707 | 64.0 | 1920 | nan | 0.375 | 0.3726 | 0.4062 | 0.375 |
124
+ | 1.0793 | 65.0 | 1950 | nan | 0.375 | 0.3723 | 0.4046 | 0.375 |
125
+ | 1.0849 | 66.0 | 1980 | nan | 0.3917 | 0.3921 | 0.4408 | 0.3917 |
126
+ | 1.0722 | 67.0 | 2010 | nan | 0.3875 | 0.3841 | 0.4191 | 0.3875 |
127
+ | 1.0646 | 68.0 | 2040 | nan | 0.3958 | 0.3931 | 0.4241 | 0.3958 |
128
+ | 1.0771 | 69.0 | 2070 | nan | 0.3958 | 0.3950 | 0.4379 | 0.3958 |
129
+ | 1.0761 | 70.0 | 2100 | nan | 0.3917 | 0.3915 | 0.4408 | 0.3917 |
130
+ | 1.0759 | 71.0 | 2130 | nan | 0.3875 | 0.3862 | 0.4146 | 0.3875 |
131
+ | 1.0727 | 72.0 | 2160 | nan | 0.3792 | 0.3784 | 0.4375 | 0.3792 |
132
+ | 1.0758 | 73.0 | 2190 | nan | 0.3875 | 0.3829 | 0.4411 | 0.3875 |
133
+ | 1.0848 | 74.0 | 2220 | nan | 0.375 | 0.3713 | 0.4352 | 0.375 |
134
+ | 1.0659 | 75.0 | 2250 | nan | 0.3958 | 0.3927 | 0.4305 | 0.3958 |
135
+ | 1.0784 | 76.0 | 2280 | nan | 0.3792 | 0.3743 | 0.4097 | 0.3792 |
136
+ | 1.0831 | 77.0 | 2310 | nan | 0.3833 | 0.3776 | 0.4187 | 0.3833 |
137
+ | 1.074 | 78.0 | 2340 | nan | 0.3833 | 0.3789 | 0.4226 | 0.3833 |
138
+ | 1.08 | 79.0 | 2370 | nan | 0.375 | 0.3727 | 0.4187 | 0.375 |
139
+ | 1.0744 | 80.0 | 2400 | nan | 0.3917 | 0.3917 | 0.4181 | 0.3917 |
140
+ | 1.0568 | 81.0 | 2430 | nan | 0.3708 | 0.3681 | 0.4320 | 0.3708 |
141
+ | 1.074 | 82.0 | 2460 | nan | 0.3875 | 0.3853 | 0.4158 | 0.3875 |
142
+ | 1.0822 | 83.0 | 2490 | nan | 0.3917 | 0.3897 | 0.4406 | 0.3917 |
143
+ | 1.0735 | 84.0 | 2520 | nan | 0.3833 | 0.3820 | 0.4121 | 0.3833 |
144
+ | 1.0679 | 85.0 | 2550 | nan | 0.3875 | 0.3860 | 0.4324 | 0.3875 |
145
+ | 1.0775 | 86.0 | 2580 | nan | 0.375 | 0.3670 | 0.4306 | 0.375 |
146
+ | 1.0683 | 87.0 | 2610 | nan | 0.3792 | 0.3736 | 0.4168 | 0.3792 |
147
+ | 1.0611 | 88.0 | 2640 | nan | 0.3792 | 0.3738 | 0.4278 | 0.3792 |
148
+ | 1.0844 | 89.0 | 2670 | nan | 0.3833 | 0.3808 | 0.4212 | 0.3833 |
149
+ | 1.0628 | 90.0 | 2700 | nan | 0.3917 | 0.3891 | 0.4244 | 0.3917 |
150
+ | 1.0639 | 91.0 | 2730 | nan | 0.3833 | 0.3779 | 0.4159 | 0.3833 |
151
+ | 1.0758 | 92.0 | 2760 | nan | 0.3708 | 0.3677 | 0.4278 | 0.3708 |
152
+ | 1.0991 | 93.0 | 2790 | nan | 0.375 | 0.3726 | 0.4107 | 0.375 |
153
+ | 1.0733 | 94.0 | 2820 | nan | 0.3833 | 0.3781 | 0.4232 | 0.3833 |
154
+ | 1.0632 | 95.0 | 2850 | nan | 0.3875 | 0.3856 | 0.4115 | 0.3875 |
155
+ | 1.0791 | 96.0 | 2880 | nan | 0.3667 | 0.3595 | 0.4048 | 0.3667 |
156
+ | 1.0633 | 97.0 | 2910 | nan | 0.3792 | 0.3768 | 0.4145 | 0.3792 |
157
+ | 1.074 | 98.0 | 2940 | nan | 0.375 | 0.3723 | 0.4008 | 0.375 |
158
+ | 1.0983 | 99.0 | 2970 | nan | 0.375 | 0.3695 | 0.4072 | 0.375 |
159
+ | 1.0959 | 100.0 | 3000 | nan | 0.3792 | 0.3757 | 0.4054 | 0.3792 |
160
+ | 1.0695 | 101.0 | 3030 | nan | 0.3917 | 0.3869 | 0.4205 | 0.3917 |
161
+ | 1.0708 | 102.0 | 3060 | nan | 0.3958 | 0.3921 | 0.4264 | 0.3958 |
162
+ | 1.0741 | 103.0 | 3090 | nan | 0.3792 | 0.3714 | 0.4111 | 0.3792 |
163
+ | 1.0773 | 104.0 | 3120 | nan | 0.3833 | 0.3784 | 0.4154 | 0.3833 |
164
+ | 1.0824 | 105.0 | 3150 | nan | 0.375 | 0.3683 | 0.4067 | 0.375 |
165
+ | 1.071 | 106.0 | 3180 | nan | 0.3708 | 0.3668 | 0.4033 | 0.3708 |
166
+ | 1.0631 | 107.0 | 3210 | nan | 0.3833 | 0.3808 | 0.4136 | 0.3833 |
167
+ | 1.0824 | 108.0 | 3240 | nan | 0.375 | 0.3691 | 0.4184 | 0.375 |
168
+ | 1.0779 | 109.0 | 3270 | nan | 0.3708 | 0.3644 | 0.4080 | 0.3708 |
169
+ | 1.0739 | 110.0 | 3300 | nan | 0.3792 | 0.3775 | 0.4139 | 0.3792 |
170
+ | 1.0715 | 111.0 | 3330 | nan | 0.3917 | 0.3878 | 0.4404 | 0.3917 |
171
+ | 1.0633 | 112.0 | 3360 | nan | 0.3792 | 0.3777 | 0.4302 | 0.3792 |
172
+ | 1.063 | 113.0 | 3390 | nan | 0.375 | 0.3729 | 0.4195 | 0.375 |
173
+ | 1.078 | 114.0 | 3420 | nan | 0.3875 | 0.3826 | 0.4360 | 0.3875 |
174
+ | 1.0737 | 115.0 | 3450 | nan | 0.3875 | 0.3857 | 0.4427 | 0.3875 |
175
+ | 1.067 | 116.0 | 3480 | nan | 0.3917 | 0.3876 | 0.4393 | 0.3917 |
176
+ | 1.0581 | 117.0 | 3510 | nan | 0.375 | 0.3718 | 0.4174 | 0.375 |
177
+ | 1.0691 | 118.0 | 3540 | nan | 0.375 | 0.3695 | 0.4130 | 0.375 |
178
+ | 1.0589 | 119.0 | 3570 | nan | 0.375 | 0.3718 | 0.4174 | 0.375 |
179
+ | 1.0616 | 120.0 | 3600 | nan | 0.3708 | 0.3650 | 0.4020 | 0.3708 |
180
+ | 1.0541 | 121.0 | 3630 | nan | 0.375 | 0.3715 | 0.4067 | 0.375 |
181
+ | 1.0699 | 122.0 | 3660 | nan | 0.3875 | 0.3831 | 0.4214 | 0.3875 |
182
+ | 1.0697 | 123.0 | 3690 | nan | 0.3958 | 0.3925 | 0.4297 | 0.3958 |
183
+ | 1.0744 | 124.0 | 3720 | nan | 0.3917 | 0.3881 | 0.4271 | 0.3917 |
184
+ | 1.0817 | 125.0 | 3750 | nan | 0.3875 | 0.3816 | 0.4359 | 0.3875 |
185
+ | 1.085 | 126.0 | 3780 | nan | 0.3708 | 0.3680 | 0.4096 | 0.3708 |
186
+ | 1.0918 | 127.0 | 3810 | nan | 0.3792 | 0.3772 | 0.4240 | 0.3792 |
187
+ | 1.071 | 128.0 | 3840 | nan | 0.3917 | 0.3904 | 0.4357 | 0.3917 |
188
+ | 1.0684 | 129.0 | 3870 | nan | 0.4 | 0.3996 | 0.4426 | 0.4 |
189
+ | 1.0647 | 130.0 | 3900 | nan | 0.3792 | 0.3769 | 0.4430 | 0.3792 |
190
+ | 1.0814 | 131.0 | 3930 | nan | 0.375 | 0.3721 | 0.4137 | 0.375 |
191
+ | 1.0806 | 132.0 | 3960 | nan | 0.3833 | 0.3801 | 0.4489 | 0.3833 |
192
+ | 1.0877 | 133.0 | 3990 | nan | 0.3875 | 0.3861 | 0.4332 | 0.3875 |
193
+ | 1.0694 | 134.0 | 4020 | nan | 0.3917 | 0.3891 | 0.4266 | 0.3917 |
194
+ | 1.071 | 135.0 | 4050 | nan | 0.3917 | 0.3899 | 0.4383 | 0.3917 |
195
+ | 1.0647 | 136.0 | 4080 | nan | 0.3917 | 0.3904 | 0.4357 | 0.3917 |
196
+ | 1.0877 | 137.0 | 4110 | nan | 0.3917 | 0.3902 | 0.4327 | 0.3917 |
197
+ | 1.0661 | 138.0 | 4140 | nan | 0.3875 | 0.3855 | 0.4266 | 0.3875 |
198
+ | 1.0855 | 139.0 | 4170 | nan | 0.3917 | 0.3912 | 0.4464 | 0.3917 |
199
+ | 1.0824 | 140.0 | 4200 | nan | 0.3917 | 0.3888 | 0.4509 | 0.3917 |
200
+ | 1.0615 | 141.0 | 4230 | nan | 0.3917 | 0.3905 | 0.4384 | 0.3917 |
201
+ | 1.0684 | 142.0 | 4260 | nan | 0.3958 | 0.3942 | 0.4474 | 0.3958 |
202
+ | 1.0514 | 143.0 | 4290 | nan | 0.3875 | 0.3857 | 0.4259 | 0.3875 |
203
+ | 1.0786 | 144.0 | 4320 | nan | 0.3917 | 0.3899 | 0.4294 | 0.3917 |
204
+ | 1.0908 | 145.0 | 4350 | nan | 0.3875 | 0.3863 | 0.4493 | 0.3875 |
205
+ | 1.0945 | 146.0 | 4380 | nan | 0.3875 | 0.3850 | 0.4275 | 0.3875 |
206
+ | 1.0635 | 147.0 | 4410 | nan | 0.3792 | 0.3769 | 0.4199 | 0.3792 |
207
+ | 1.0573 | 148.0 | 4440 | nan | 0.3917 | 0.3904 | 0.4378 | 0.3917 |
208
+ | 1.0602 | 149.0 | 4470 | nan | 0.3875 | 0.3855 | 0.4331 | 0.3875 |
209
+ | 1.0824 | 150.0 | 4500 | nan | 0.3958 | 0.3938 | 0.4369 | 0.3958 |
210
+ | 1.0759 | 151.0 | 4530 | nan | 0.3958 | 0.3939 | 0.4391 | 0.3958 |
211
+ | 1.0373 | 152.0 | 4560 | nan | 0.4 | 0.3985 | 0.4577 | 0.4 |
212
+ | 1.0891 | 153.0 | 4590 | nan | 0.3875 | 0.3863 | 0.4493 | 0.3875 |
213
+ | 1.0836 | 154.0 | 4620 | nan | 0.3917 | 0.3909 | 0.4426 | 0.3917 |
214
+ | 1.043 | 155.0 | 4650 | nan | 0.3917 | 0.3903 | 0.4350 | 0.3917 |
215
+ | 1.0686 | 156.0 | 4680 | nan | 0.3875 | 0.3863 | 0.4493 | 0.3875 |
216
+ | 1.0733 | 157.0 | 4710 | nan | 0.3833 | 0.3810 | 0.4452 | 0.3833 |
217
+ | 1.0777 | 158.0 | 4740 | nan | 0.3833 | 0.3802 | 0.4461 | 0.3833 |
218
+ | 1.0842 | 159.0 | 4770 | nan | 0.3917 | 0.3898 | 0.4398 | 0.3917 |
219
+ | 1.0586 | 160.0 | 4800 | nan | 0.3875 | 0.3859 | 0.4372 | 0.3875 |
220
+ | 1.072 | 161.0 | 4830 | nan | 0.375 | 0.3730 | 0.4301 | 0.375 |
221
+ | 1.0853 | 162.0 | 4860 | nan | 0.3875 | 0.3868 | 0.4237 | 0.3875 |
222
+ | 1.061 | 163.0 | 4890 | nan | 0.3792 | 0.3759 | 0.4202 | 0.3792 |
223
+ | 1.0806 | 164.0 | 4920 | nan | 0.3917 | 0.3903 | 0.4470 | 0.3917 |
224
+ | 1.0873 | 165.0 | 4950 | nan | 0.3958 | 0.3937 | 0.4431 | 0.3958 |
225
+ | 1.0696 | 166.0 | 4980 | nan | 0.3958 | 0.3943 | 0.4504 | 0.3958 |
226
+ | 1.0828 | 167.0 | 5010 | nan | 0.3958 | 0.3937 | 0.4431 | 0.3958 |
227
+ | 1.069 | 168.0 | 5040 | nan | 0.3917 | 0.3900 | 0.4433 | 0.3917 |
228
+ | 1.0798 | 169.0 | 5070 | nan | 0.3833 | 0.3817 | 0.4329 | 0.3833 |
229
+ | 1.0801 | 170.0 | 5100 | nan | 0.3875 | 0.3857 | 0.4364 | 0.3875 |
230
+ | 1.055 | 171.0 | 5130 | nan | 0.3833 | 0.3820 | 0.4364 | 0.3833 |
231
+ | 1.0737 | 172.0 | 5160 | nan | 0.3833 | 0.3824 | 0.4305 | 0.3833 |
232
+ | 1.0805 | 173.0 | 5190 | nan | 0.3833 | 0.3821 | 0.4275 | 0.3833 |
233
+ | 1.0783 | 174.0 | 5220 | nan | 0.3917 | 0.3912 | 0.4353 | 0.3917 |
234
+ | 1.0823 | 175.0 | 5250 | nan | 0.3833 | 0.3820 | 0.4330 | 0.3833 |
235
+ | 1.0732 | 176.0 | 5280 | nan | 0.3917 | 0.3900 | 0.4433 | 0.3917 |
236
+ | 1.0651 | 177.0 | 5310 | nan | 0.3875 | 0.3863 | 0.4436 | 0.3875 |
237
+ | 1.0865 | 178.0 | 5340 | nan | 0.3792 | 0.3783 | 0.4367 | 0.3792 |
238
+ | 1.0693 | 179.0 | 5370 | nan | 0.3958 | 0.3947 | 0.4551 | 0.3958 |
239
+ | 1.0764 | 180.0 | 5400 | nan | 0.3833 | 0.3811 | 0.4267 | 0.3833 |
240
+ | 1.069 | 181.0 | 5430 | nan | 0.3875 | 0.3859 | 0.4372 | 0.3875 |
241
+ | 1.0872 | 182.0 | 5460 | nan | 0.3792 | 0.3777 | 0.4302 | 0.3792 |
242
+ | 1.0919 | 183.0 | 5490 | nan | 0.3958 | 0.3939 | 0.4439 | 0.3958 |
243
+ | 1.0715 | 184.0 | 5520 | nan | 0.3875 | 0.3859 | 0.4372 | 0.3875 |
244
+ | 1.0569 | 185.0 | 5550 | nan | 0.3792 | 0.3767 | 0.4195 | 0.3792 |
245
+ | 1.0665 | 186.0 | 5580 | nan | 0.3958 | 0.3937 | 0.4408 | 0.3958 |
246
+ | 1.0702 | 187.0 | 5610 | nan | 0.3875 | 0.3856 | 0.4249 | 0.3875 |
247
+ | 1.0809 | 188.0 | 5640 | nan | 0.3792 | 0.3777 | 0.4302 | 0.3792 |
248
+ | 1.0659 | 189.0 | 5670 | nan | 0.3917 | 0.3899 | 0.4406 | 0.3917 |
249
+ | 1.0581 | 190.0 | 5700 | nan | 0.3833 | 0.3816 | 0.4305 | 0.3833 |
250
+ | 1.0776 | 191.0 | 5730 | nan | 0.3875 | 0.3862 | 0.4406 | 0.3875 |
251
+ | 1.0802 | 192.0 | 5760 | nan | 0.3958 | 0.3942 | 0.4474 | 0.3958 |
252
+ | 1.0845 | 193.0 | 5790 | nan | 0.3917 | 0.3899 | 0.4534 | 0.3917 |
253
+ | 1.0512 | 194.0 | 5820 | nan | 0.3917 | 0.3912 | 0.4512 | 0.3917 |
254
+ | 1.0702 | 195.0 | 5850 | nan | 0.3958 | 0.3940 | 0.4466 | 0.3958 |
255
+ | 1.0794 | 196.0 | 5880 | nan | 0.3875 | 0.3862 | 0.4406 | 0.3875 |
256
+ | 1.0817 | 197.0 | 5910 | nan | 0.3917 | 0.3902 | 0.4440 | 0.3917 |
257
+ | 1.0798 | 198.0 | 5940 | nan | 0.3958 | 0.3942 | 0.4474 | 0.3958 |
258
+ | 1.0764 | 199.0 | 5970 | nan | 0.3958 | 0.3944 | 0.4511 | 0.3958 |
259
+ | 1.0625 | 200.0 | 6000 | nan | 0.3833 | 0.3812 | 0.44 | 0.3833 |
260
+ | 1.0746 | 201.0 | 6030 | nan | 0.3917 | 0.3905 | 0.4478 | 0.3917 |
261
+ | 1.0912 | 202.0 | 6060 | nan | 0.3792 | 0.3770 | 0.4213 | 0.3792 |
262
+ | 1.0557 | 203.0 | 6090 | nan | 0.3833 | 0.3812 | 0.44 | 0.3833 |
263
+ | 1.057 | 204.0 | 6120 | nan | 0.3875 | 0.3850 | 0.4275 | 0.3875 |
264
+ | 1.0635 | 205.0 | 6150 | nan | 0.3875 | 0.3852 | 0.4302 | 0.3875 |
265
+ | 1.0744 | 206.0 | 6180 | nan | 0.375 | 0.3721 | 0.4196 | 0.375 |
266
+ | 1.0939 | 207.0 | 6210 | nan | 0.3875 | 0.3852 | 0.4302 | 0.3875 |
267
+ | 1.0703 | 208.0 | 6240 | nan | 0.3792 | 0.3755 | 0.4308 | 0.3792 |
268
+ | 1.0812 | 209.0 | 6270 | nan | 0.3708 | 0.3676 | 0.4247 | 0.3708 |
269
+ | 1.0797 | 210.0 | 6300 | nan | 0.3875 | 0.3854 | 0.4311 | 0.3875 |
270
+ | 1.0783 | 211.0 | 6330 | nan | 0.3833 | 0.3807 | 0.4215 | 0.3833 |
271
+ | 1.0645 | 212.0 | 6360 | nan | 0.3917 | 0.3895 | 0.4345 | 0.3917 |
272
+ | 1.075 | 213.0 | 6390 | nan | 0.375 | 0.3723 | 0.4225 | 0.375 |
273
+ | 1.0549 | 214.0 | 6420 | nan | 0.3917 | 0.3893 | 0.4319 | 0.3917 |
274
+ | 1.0732 | 215.0 | 6450 | nan | 0.375 | 0.3726 | 0.4258 | 0.375 |
275
+ | 1.081 | 216.0 | 6480 | nan | 0.3708 | 0.3674 | 0.4239 | 0.3708 |
276
+ | 1.0623 | 217.0 | 6510 | nan | 0.3833 | 0.3793 | 0.4335 | 0.3833 |
277
+ | 1.066 | 218.0 | 6540 | nan | 0.3833 | 0.3793 | 0.4335 | 0.3833 |
278
+ | 1.0761 | 219.0 | 6570 | nan | 0.3833 | 0.3795 | 0.4342 | 0.3833 |
279
+ | 1.0528 | 220.0 | 6600 | nan | 0.3917 | 0.3899 | 0.4406 | 0.3917 |
280
+ | 1.0577 | 221.0 | 6630 | nan | 0.3792 | 0.3755 | 0.4308 | 0.3792 |
281
+ | 1.0796 | 222.0 | 6660 | nan | 0.3875 | 0.3846 | 0.4381 | 0.3875 |
282
+ | 1.0571 | 223.0 | 6690 | nan | 0.3875 | 0.3859 | 0.4372 | 0.3875 |
283
+ | 1.081 | 224.0 | 6720 | nan | 0.3875 | 0.3859 | 0.4372 | 0.3875 |
284
+ | 1.0761 | 225.0 | 6750 | nan | 0.3792 | 0.3772 | 0.4240 | 0.3792 |
285
+ | 1.0667 | 226.0 | 6780 | nan | 0.3833 | 0.3810 | 0.4362 | 0.3833 |
286
+ | 1.0838 | 227.0 | 6810 | nan | 0.375 | 0.3723 | 0.4225 | 0.375 |
287
+ | 1.0441 | 228.0 | 6840 | nan | 0.375 | 0.3723 | 0.4225 | 0.375 |
288
+ | 1.053 | 229.0 | 6870 | nan | 0.375 | 0.3729 | 0.4293 | 0.375 |
289
+ | 1.0648 | 230.0 | 6900 | nan | 0.3792 | 0.3769 | 0.4328 | 0.3792 |
290
+ | 1.0704 | 231.0 | 6930 | nan | 0.3792 | 0.3758 | 0.4347 | 0.3792 |
291
+ | 1.0909 | 232.0 | 6960 | nan | 0.375 | 0.3718 | 0.4313 | 0.375 |
292
+ | 1.0405 | 233.0 | 6990 | nan | 0.3833 | 0.3808 | 0.4354 | 0.3833 |
293
+ | 1.0957 | 234.0 | 7020 | nan | 0.375 | 0.3718 | 0.4313 | 0.375 |
294
+ | 1.0526 | 235.0 | 7050 | nan | 0.3792 | 0.3758 | 0.4347 | 0.3792 |
295
+ | 1.07 | 236.0 | 7080 | nan | 0.3708 | 0.3674 | 0.4239 | 0.3708 |
296
+ | 1.081 | 237.0 | 7110 | nan | 0.375 | 0.3718 | 0.4313 | 0.375 |
297
+ | 1.0567 | 238.0 | 7140 | nan | 0.375 | 0.3718 | 0.4313 | 0.375 |
298
+ | 1.0558 | 239.0 | 7170 | nan | 0.375 | 0.3715 | 0.4274 | 0.375 |
299
+ | 1.1036 | 240.0 | 7200 | nan | 0.375 | 0.3715 | 0.4274 | 0.375 |
300
+ | 1.0691 | 241.0 | 7230 | nan | 0.3792 | 0.3769 | 0.4328 | 0.3792 |
301
+ | 1.0531 | 242.0 | 7260 | nan | 0.3833 | 0.3821 | 0.4372 | 0.3833 |
302
+ | 1.0711 | 243.0 | 7290 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
303
+ | 1.0812 | 244.0 | 7320 | nan | 0.3833 | 0.3821 | 0.4372 | 0.3833 |
304
+ | 1.0796 | 245.0 | 7350 | nan | 0.3833 | 0.3821 | 0.4372 | 0.3833 |
305
+ | 1.0536 | 246.0 | 7380 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
306
+ | 1.0766 | 247.0 | 7410 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
307
+ | 1.0803 | 248.0 | 7440 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
308
+ | 1.075 | 249.0 | 7470 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
309
+ | 1.0688 | 250.0 | 7500 | nan | 0.3833 | 0.3818 | 0.4337 | 0.3833 |
310
+
311
+
312
+ ### Framework versions
313
+
314
+ - Transformers 4.45.1
315
+ - Pytorch 2.4.0
316
+ - Datasets 3.0.1
317
+ - Tokenizers 0.20.0