nllb-zh-pt-14k / model.py
jamesebond's picture
Upload 5 files
c4039ba verified
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os
from abc import ABC, abstractmethod
from typing import List
import re
class FilterPipeline():
def __init__(self, filter_list):
self._filter_list:List[Filter] = filter_list
def append(self, filter):
self._filter_list.append(filter)
def batch_encoder(self, inputs):
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs
class Filter(ABC):
def __init__(self):
self.name = 'filter'
self.code = []
@abstractmethod
def encoder(self, inputs):
pass
@abstractmethod
def decoder(self, inputs):
pass
class SpecialTokenFilter(Filter):
def __init__(self):
self.name = 'special token filter'
self.code = []
self.special_tokens = ['!', '!', '-']
def encoder(self, inputs):
filtered_inputs = []
self.code = []
for i, input_str in enumerate(inputs):
if not all(char in self.special_tokens for char in input_str):
filtered_inputs.append(input_str)
else:
self.code.append([i, input_str])
return filtered_inputs
def decoder(self, inputs):
original_inputs = inputs.copy()
for removed_indice in self.code:
original_inputs.insert(removed_indice[0], removed_indice[1])
return original_inputs
class SperSignFilter(Filter):
def __init__(self):
self.name = 's percentage sign filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if '%s' in input_str:
encoded_str = input_str.replace('%s', '*')
self.code.append(i) # 将包含 '%s' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('*', '%s') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class ParenSParenFilter(Filter):
def __init__(self):
self.name = 'Paren s paren filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if '(s)' in input_str:
encoded_str = input_str.replace('(s)', '$')
self.code.append(i) # 将包含 '(s)' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('$', '(s)') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class ChevronsFilter(Filter):
def __init__(self):
self.name = 'chevrons filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
pattern = re.compile(r'<.*?>')
for i, input_str in enumerate(inputs):
if pattern.search(input_str):
matches = pattern.findall(input_str)
encoded_str = pattern.sub('#', input_str)
self.code.append((i, matches)) # 将包含匹配模式的字符串的索引和匹配列表存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i, matches in self.code:
for match in matches:
decoded_inputs[i] = decoded_inputs[i].replace('#', match, 1) # 使用 self.code 中的匹配列表依次还原原始字符串
return decoded_inputs
class SimilarFilter(Filter):
def __init__(self):
self.name = 'similar filter'
self.code = []
def is_similar(self, str1, str2):
# 判断两个字符串是否相似(只有数字上有区别)
pattern = re.compile(r'\d+')
return pattern.sub('', str1) == pattern.sub('', str2)
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
i = 0
while i < len(inputs):
encoded_inputs.append(inputs[i])
similar_strs = [inputs[i]]
j = i + 1
while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
similar_strs.append(inputs[j])
j += 1
if len(similar_strs) > 1:
self.code.append((i, similar_strs)) # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
i = j
return encoded_inputs
def decoder(self, inputs:List):
decoded_inputs = inputs
for i, similar_strs in self.code:
pattern = re.compile(r'\d+')
for j in range(len(similar_strs)):
if pattern.search(similar_strs[j]):
number = re.findall(r'\d+', similar_strs[j])[0] # 获取相似字符串的数字部分
new_str = pattern.sub(number, inputs[i]) # 将新字符串的数字部分替换为相似字符串的数字部分
else:
new_str = inputs[i] # 如果相似字符串不含数字,直接使用新字符串
if j > 0:
decoded_inputs.insert(i+j, new_str)
return decoded_inputs
class ChineseFilter:
def __init__(self, pinyin_lib_file='pinyin.txt'):
self.name = 'chinese filter'
self.code = []
self.pinyin_lib = self.load_pinyin_lib(pinyin_lib_file)
def load_pinyin_lib(self, file_path):
with open(os.path.join(script_dir,file_path), 'r', encoding='utf-8') as f:
return set(line.strip().lower() for line in f)
def is_valid_chinese(self, word):
# 判断一个单词是否符合要求:只有一个单词构成,并且首字母大写
if len(word.split()) == 1 and word[0].isupper():
# 使用pinyin_or_word函数判断是否是合法的拼音
return self.is_pinyin(word.lower())
return False
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, word in enumerate(inputs):
if self.is_valid_chinese(word):
self.code.append((i, word)) # 将需要过滤的中文单词的索引和拼音存储到 self.code 中
else:
encoded_inputs.append(word)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i, word in self.code:
decoded_inputs.insert(i, word) # 根据索引将过滤的中文单词还原到原位置
return decoded_inputs
def is_pinyin(self, string):
'''
judge a string is a pinyin or a english word.
pinyin_Lib comes from a txt file.
'''
string = string.lower()
stringlen = len(string)
max_len = 6
result = []
n = 0
while n < stringlen:
matched = 0
temp_result = []
for i in range(max_len, 0, -1):
s = string[0:i]
if s in self.pinyin_lib:
temp_result.append(string[:i])
matched = i
break
if i == 1 and len(temp_result) == 0:
return False
result.extend(temp_result)
string = string[matched:]
n += matched
return True
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
class Model():
def __init__(self, modelname, selected_lora_model, selected_gpu):
def get_gpu_index(gpu_info, target_gpu_name):
"""
从 GPU 信息中获取目标 GPU 的索引
Args:
gpu_info (list): 包含 GPU 名称的列表
target_gpu_name (str): 目标 GPU 的名称
Returns:
int: 目标 GPU 的索引,如果未找到则返回 -1
"""
for i, name in enumerate(gpu_info):
if target_gpu_name.lower() in name.lower():
return i
return -1
if selected_gpu != "cpu":
gpu_count = torch.cuda.device_count()
gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
self.device_name = f"cuda:{selected_gpu_index}"
else:
self.device_name = "cpu"
print("device_name", self.device_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelname)
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
def generate(self, inputs, original_language, target_languages, max_batch_size):
filter_list = [SpecialTokenFilter(), SperSignFilter(), ParenSParenFilter(), ChevronsFilter(), SimilarFilter(), ChineseFilter()]
filter_pipeline = FilterPipeline(filter_list)
def language_mapping(original_language):
d = {
"Achinese (Arabic script)": "ace_Arab",
"Achinese (Latin script)": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Standard Arabic": "arb_Arab",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar (Arabic script)": "bjn_Arab",
"Banjar (Latin script)": "bjn_Latn",
"Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Dinka": "dik_Latn",
"Jula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Persian": "pes_Arab",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Iloko": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Kachin": "kac_Latn",
"Arabic": "ar_AR",
"Chinese": "zho_Hans",
"Spanish": "spa_Latn",
"Dutch": "nld_Latn",
"Kazakh": "kaz_Cyrl",
"Korean": "kor_Hang",
"Lithuanian": "lit_Latn",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Nepali": "ne_NP",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Russian": "rus_Cyrl",
"Sinhala": "sin_Sinh",
"Tamil": "tam_Taml",
"Turkish": "tur_Latn",
"Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab",
"Vietnamese": "vie_Latn",
"Thai":"tha_Thai",
"Khmer":"khm_Khmr"
}
return d[original_language]
def process_gpu_translate_result(temp_outputs):
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
excel_writer = ExcelFileWriter()
excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
self.tokenizer.src_lang = language_mapping(original_language)
if self.device_name == "cpu":
# Tokenize input
input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
output = []
for target_language in target_languages:
# Get language code for the target language
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
# Generate translation
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
max_length=128
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
output.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
outputs = []
length = len(output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
else:
# 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
# max_batch_size = 10
# Ensure batch size is within model limits:
print("length of inputs: ",len(inputs))
batch_size = min(len(inputs), int(max_batch_size))
batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
print("length of batches size: ", len(batches))
temp_outputs = []
processed_num = 0
for index, batch in enumerate(batches):
# Tokenize input
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print(len(batch))
print(batch)
batch = filter_pipeline.batch_encoder(batch)
print(batch)
temp = []
if len(batch) > 0:
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
for target_language in target_languages:
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(generated_translation)
generated_translation = filter_pipeline.batch_decoder(generated_translation)
print(generated_translation)
print(len(generated_translation))
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
input_ids.to('cpu')
del input_ids
else:
for target_language in target_languages:
generated_translation = filter_pipeline.batch_decoder(batch)
print(generated_translation)
print(len(generated_translation))
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
temp_outputs.append(temp)
processed_num += len(batch)
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
print("Already processed number: ", len(temp_outputs))
process_gpu_translate_result(temp_outputs)
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs