--- base_model: openai/whisper-base datasets: - yoona-J/whisper_call_audio language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper_call results: [] --- # Whisper_call This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the whisper_call_audio dataset. It achieves the following results on the evaluation set: - Loss: 0.5226 - Cer: 81.2616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8139 | 2.0 | 200 | 0.7714 | 37.8221 | | 0.3977 | 4.0 | 400 | 0.4928 | 33.9313 | | 0.1864 | 6.0 | 600 | 0.4458 | 78.8698 | | 0.0907 | 8.0 | 800 | 0.4532 | 72.4187 | | 0.0357 | 10.0 | 1000 | 0.4712 | 89.8265 | | 0.015 | 12.0 | 1200 | 0.4899 | 88.2432 | | 0.007 | 14.0 | 1400 | 0.5035 | 85.6325 | | 0.0043 | 16.0 | 1600 | 0.5162 | 83.3839 | | 0.0037 | 18.0 | 1800 | 0.5205 | 82.0448 | | 0.0034 | 20.0 | 2000 | 0.5226 | 81.2616 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1