{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78114187b370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78114187b400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78114187b490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78114187b520>", "_build": "<function ActorCriticPolicy._build at 0x78114187b5b0>", "forward": "<function ActorCriticPolicy.forward at 0x78114187b640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78114187b6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78114187b760>", "_predict": "<function ActorCriticPolicy._predict at 0x78114187b7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78114187b880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78114187b910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78114187b9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78114181b640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710893695159805682, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADN5Er7bgho/cTDKPd8Egb6iGDe8Sw8DPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQD1T+irT6SGMAWyUS7OMAXSUR0CcYP4UN8VpdX2UKGgGR0AkzNUwSJ0oaAdLzWgIR0CcYiFOO802dX2UKGgGR0BxGVyU9pyqaAdL+mgIR0CcY4Ke05U+dX2UKGgGR0BxxjngYP5IaAdNBgFoCEdAnGUFKK5083V9lChoBkdAPRJsGgSOBGgHS7ZoCEdAnGc1toBaLXV9lChoBkdAPEAyAQQL/mgHS8xoCEdAnGhh/Aj6e3V9lChoBkdAQ78hHLA572gHS7ZoCEdAnGlqnBLwnnV9lChoBkdAR7HP3SKFZmgHS7doCEdAnGpvs7dSEXV9lChoBkdAcPt2OQyRCGgHTQ8BaAhHQJxr7Jr+Hah1fZQoaAZHQG+P3IU8FINoB0vvaAhHQJxud12aDwp1fZQoaAZHQHF/nDiwSrZoB00NAWgIR0Ccb/gRsdkrdX2UKGgGR0Bzu8/lhgE2aAdNRwFoCEdAnHHfGuLaVXV9lChoBkdATMCSaEzwdGgHS7poCEdAnHLk52hZhnV9lChoBkdAcmbChvitJWgHTQUBaAhHQJx1o6nzg/F1fZQoaAZHQG/udLxqfvpoB00WAWgIR0Ccd0IZZSvUdX2UKGgGR0BxLIiosI3SaAdNAQFoCEdAnHjAqAjIJnV9lChoBkdAT/fK+zt1IWgHS7hoCEdAnHnKh11W83V9lChoBkdAcQSovSMLnmgHTR0BaAhHQJx8k+r2g391fZQoaAZHQG7SrWZqmCRoB00PAWgIR0Ccfiq+ajN7dX2UKGgGR0ByBU0EX+ERaAdNFAFoCEdAnH+/HcUM5XV9lChoBkdARsoBtDUmUmgHS9JoCEdAnIFr5ZbILnV9lChoBkdAP5rPhQ3xWmgHS9BoCEdAnIRerELpinV9lChoBkdAcPgMnJDE32gHTRABaAhHQJyGmDBdld11fZQoaAZHQHG0eLBKtgdoB0vhaAhHQJyICE4//vR1fZQoaAZHQERETyJ9AopoB0vDaAhHQJyJKfg75mB1fZQoaAZHQHGxi5NGmUJoB00kAWgIR0Ccis3gUDdQdX2UKGgGR0BQIN/J/5LzaAdL92gIR0CcjWJIlMRIdX2UKGgGR0BwzGkcjqwAaAdNCwFoCEdAnI7iA+Y+jnV9lChoBkdAQDHQtz0Yj2gHS8NoCEdAnI/3irDIinV9lChoBkdAcLP7iADq4mgHTRgBaAhHQJyRltix3V11fZQoaAZHQG+wGwzLwF1oB00NAWgIR0CclEvQF9rodX2UKGgGR0ByAxREWqLkaAdNBQFoCEdAnJXGlhw2l3V9lChoBkdAb8otI065oWgHTQoBaAhHQJyXREroW591fZQoaAZHQGCbCgK4QSVoB03oA2gIR0CcnlFcY64ldX2UKGgGR0ByMOD/VAiWaAdNAAFoCEdAnJ/IIa99MXV9lChoBkdASoGkWRA8jmgHS8doCEdAnKIylvZRK3V9lChoBkdAcOKBw++ueWgHTScBaAhHQJyj381n/T91fZQoaAZHQG+vQazeGfxoB0vtaAhHQJylLlZHNHJ1fZQoaAZHQHALjv7WNFVoB00JAWgIR0CcpqyQxN7CdX2UKGgGR0BscXD50r9VaAdL42gIR0CcqSDF6zE8dX2UKGgGR0Br+syN4qwyaAdL8WgIR0CcqoeGfwqidX2UKGgGR0BxFANXo1UEaAdNCgFoCEdAnKwQrhBJI3V9lChoBkdAcS2s54nndWgHTQYBaAhHQJytpvhqCYl1fZQoaAZHQEtZtiQT239oB0voaAhHQJywuiO/+Kl1fZQoaAZHQG7uvEsJ6Y5oB00DAWgIR0Ccspq6e5FxdX2UKGgGR0BR37C79Q40aAdL6GgIR0CctErHEMspdX2UKGgGR0BvMQc3l0YCaAdL6mgIR0CctjiHqNZNdX2UKGgGR0BwEJdOZb6haAdL7mgIR0CcuMOMVDa5dX2UKGgGR0Bund8VpKzzaAdNAQFoCEdAnLo3HWBjF3V9lChoBkdAcayKNQ0oB2gHTTwBaAhHQJy8BRyfcvd1fZQoaAZHQDTELc9GI9FoB0vHaAhHQJy9KlP8AJd1fZQoaAZHQHC6uI2wV0toB00GAWgIR0Ccv9aLGaQWdX2UKGgGR0BPvdIXj2i+aAdL9mgIR0CcwVFTNt65dX2UKGgGR0BxBKV/tpmFaAdNCAFoCEdAnMLRQFcIJXV9lChoBkdAcLPAhB7eEmgHS/doCEdAnMQwRChN/XV9lChoBkdAbYZf+CK77WgHTQoBaAhHQJzG+UVzp5h1fZQoaAZHQEBzRXOnl4loB0vTaAhHQJzII+s5n151fZQoaAZHQHErKOLiuMdoB00MAWgIR0CcyaFBY3efdX2UKGgGR0BxhHfUF0PpaAdNJgFoCEdAnMtbXDm8unV9lChoBkdAbw7Nqxkd3mgHTREBaAhHQJzOEjbBXS11fZQoaAZHQHGKdUbT+ehoB00MAWgIR0Ccz6lYlpoLdX2UKGgGR0BxeeX9itq6aAdNIQFoCEdAnNFVp48lonV9lChoBkdAQiifxtpEhWgHS75oCEdAnNJvp+tr9HV9lChoBkdAcAFAKOT7mGgHTRQBaAhHQJzVQ0bcXWR1fZQoaAZHQG0DwjdHlOpoB00GAWgIR0Cc1sO8TSLJdX2UKGgGR0Bt7CLS/j82aAdL+2gIR0Cc2ECBf8dgdX2UKGgGR0Bwwh/nW8RMaAdNJAFoCEdAnNnt4FA3UHV9lChoBkdAcSG/i5uqFWgHS+1oCEdAnNx0b5uZTnV9lChoBkdAcOsskY4yXWgHTQQBaAhHQJzd5JVbRnh1fZQoaAZHQG/Lis4ku6FoB0v9aAhHQJzfvLTx5LR1fZQoaAZHQGzvhnSOR1ZoB0vwaAhHQJzhek2xY7t1fZQoaAZHQHKZbeVLSNRoB0vnaAhHQJzk1EF4cFR1fZQoaAZHQHBwE/SpiqhoB00XAWgIR0Cc5qv8qFyrdX2UKGgGR0BQBZ5/smfHaAdLomgIR0Cc55R+z+m4dX2UKGgGR0BMfkRjBl+WaAdLv2gIR0Cc6Kn1FpfydX2UKGgGR0BySqg7HQyAaAdL8WgIR0Cc6gZjhDPXdX2UKGgGR0BE9Ijv/io9aAdL62gIR0Cc7Jy7f51vdX2UKGgGR0Bvx9f1HvtuaAdNIQFoCEdAnO4+NHYpUnV9lChoBkdAQ8IOUdJaq2gHS+FoCEdAnO+OXmeUZHV9lChoBkdAczuiRGMGYGgHTQcBaAhHQJzxDKkl/pd1fZQoaAZHQHI6XirDIiloB00AAWgIR0Cc86vv0AcUdX2UKGgGR0BwrNOzposaaAdL4GgIR0Cc9PqY7aIvdX2UKGgGR0Bx6xBzFMqSaAdNIAFoCEdAnPaeLR8c/HV9lChoBkdAcQ2K28Zk1GgHTRwBaAhHQJz4RkTYdyV1fZQoaAZHQHG0wmE4//xoB00JAWgIR0Cc+u2YfGModX2UKGgGR0BuqpZpztCzaAdL7mgIR0Cc/E1KGtZFdX2UKGgGR0BuIqkl/pdKaAdL4GgIR0Cc/ZI4EOiGdX2UKGgGR0ByacxbjcVQaAdL+GgIR0Cc/vi5d4VzdX2UKGgGR0BvUyneizsyaAdL7mgIR0CdAZD2JzkqdX2UKGgGR0By4VAUtZmqaAdNHwFoCEdAnQM3dCVrynV9lChoBkdAcZVSfUWl/GgHS/5oCEdAnQSnU2DQJHV9lChoBkdAcO/JjDsMRmgHTQUBaAhHQJ0GIkGA09B1fZQoaAZHQHIZiZrpJPJoB00CAWgIR0CdCMgE2YOUdX2UKGgGR0BwuKmpEQXiaAdNNwFoCEdAnQqQhStNjHV9lChoBkdAcpEBYFJQL2gHTSsBaAhHQJ0MUJE6T4d1fZQoaAZHQHEM1Y+0PYpoB0v9aAhHQJ0PubayrxR1fZQoaAZHQG+VTGo73f1oB0v7aAhHQJ0RhAfMfRx1fZQoaAZHwA0/7BO58ShoB0vXaAhHQJ0TKtCAtnR1fZQoaAZHQFDHgJkXk5poB0vXaAhHQJ0VAH1OCXh1fZQoaAZHQHCB6RyOrABoB0veaAhHQJ0WX3Gn4wh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |