--- language: en tags: - bert - cola - glue - kd - torchdistill license: apache-2.0 datasets: - cola metrics: - matthew's correlation --- `bert-base-uncased` fine-tuned on CoLA dataset, using fine-tuned `bert-large-uncased` as a teacher model, [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_kd_and_submission.ipynb) for knowledge distillation. The training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/cola/kd/bert_base_uncased_from_bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **78.9**. Yoshitomo Matsubara: **"torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP"** at *EMNLP 2023 Workshop for Natural Language Processing Open Source Software (NLP-OSS)* [[Paper](https://aclanthology.org/2023.nlposs-1.18/)] [[OpenReview](https://openreview.net/forum?id=A5Axeeu1Bo)] [[Preprint](https://arxiv.org/abs/2310.17644)] ```bibtex @inproceedings{matsubara2023torchdistill, title={{torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP}}, author={Matsubara, Yoshitomo}, booktitle={Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)}, publisher={Empirical Methods in Natural Language Processing}, pages={153--164}, year={2023} } ```