--- library_name: transformers datasets: - elyza/ELYZA-tasks-100 license: apache-2.0 language: - ja base_model: - llm-jp/llm-jp-3-13b-instruct --- # Model Card for Model ID ## Required Libraries and Their Versions - trl==0.12.2 - transformers<4.47.0 - tokenizers==0.21.0 - bitsandbytes==0.45.0 - peft==0.14.0 - datasets==3.2.0 ## Usage Google Colaboratory(L4 GPU)にて実行 ```py from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, logging, ) from peft import ( LoraConfig, PeftModel, get_peft_model, ) import os, torch, gc, json from tqdm import tqdm from datasets import load_dataset import bitsandbytes as bnb from trl import SFTTrainer from google.colab import userdata # Hugging Face Token os.environ["HF_TOKEN"] = userdata.get("HF_TOKEN") ``` ```py # 推論データ準備 datasets = [] inference_data_path = '/content/drive/MyDrive/your_path' with open(f"{inference_data_path}/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # モデルとトークナイザー準備 new_model_id = "yottan-wywy/llm-jp-3-13b-instruct-finetune_1217" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( new_model_id, quantization_config=bnb_config, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(new_model_id, trust_remote_code=True) ``` ```py # 推論実行 results = [] system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書きなさい。" for data in tqdm(datasets): input_text = data["input"] prompt = f""" {system_text} ### 指示 {input_text} ### 応答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input_text, "output": output}) ``` ## Model Details - **Model type:** Transformer-based Language Model ## Datasets ### Instruction tuning | Language | Dataset | description | |:---|:---|:---| |Japanese|[elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)| A manually constructed instruction dataset | ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)